
Gema Cabrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2488911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biosorption of nickel, cobalt, zinc and copper ions by Serratia marcescens strain 16 in mono and multimetallic systems. Biodegradation, 2022, 33, 33-43.	1.5	15
2	Identification of Enzymatic Bottlenecks for the Aerobic Production of Malate from Glycerol by the Systematic Gene Overexpression of Anaplerotic Enzymes in Escherichia coli. International Journal of Molecular Sciences, 2021, 22, 2266.	1.8	3
3	Optimization of the Biocatalysis for D-DIBOA Synthesis Using a Quick and Sensitive New Spectrophotometric Quantification Method. International Journal of Molecular Sciences, 2020, 21, 8523.	1.8	2
4	Nickel recycling through bioleaching of a Ni/Al2O3 commercial catalyst. Hydrometallurgy, 2020, 195, 105350.	1.8	8
5	Immobilization of Cells on Polyurethane Foam. Methods in Molecular Biology, 2020, 2100, 407-415.	0.4	3
6	A genetically engineered Escherichia coli strain overexpressing the nitroreductase NfsB is capable of producing the herbicide D-DIBOA with 100% molar yield. Microbial Cell Factories, 2019, 18, 86.	1.9	6
7	Overexpression of the nitroreductase NfsB in an E. coli strain as a whole-cell biocatalyst for the production of chlorinated analogues of the natural herbicide DIBOA. New Biotechnology, 2019, 50, 9-19.	2.4	6
8	Heterologous expression of the human Phosphoenol Pyruvate Carboxykinase (hPEPCK-M) improves hydrogen and ethanol synthesis in the Escherichia coli dcuD mutant when grown in a glycerol-based medium. New Biotechnology, 2017, 35, 1-12.	2.4	7
9	Identification of enhanced hydrogen and ethanol Escherichia coli producer strains in a glycerol-based medium by screening in single-knock out mutant collections. Microbial Cell Factories, 2015, 14, 93.	1.9	22
10	A systematic analysis of TCA <i>Escherichia coli</i> mutants reveals suitable genetic backgrounds for enhanced hydrogen and ethanol production using glycerol as main carbon source. Biotechnology Journal, 2015, 10, 1750-1761.	1.8	16
11	Study of the role played by NfsA, NfsB nitroreductase and NemA flavin reductase from Escherichia coli in the conversion of ethyl 2-(2′-nitrophenoxy)acetate to 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA), a benzohydroxamic acid with interesting biological properties. Applied Microbiology and Biotechnology, 2012, 94, 163-171.	1.7	18
12	Different strategies for recovering metals from CARON process residue. Journal of Hazardous Materials, 2011, 189, 836-842.	6.5	8
13	Biotransformation of ethyl 2-(2′-nitrophenoxy)acetate to benzohydroxamic acid (D-DIBOA) by Escherichia coli. Process Biochemistry, 2011, 46, 358-364.	1.8	7
14	Combined strategy for the precipitation of heavy metals and biodegradation of petroleum in in industrial wastewaters. Journal of Hazardous Materials, 2010, 182, 896-902.	6.5	52
15	Integrated system for the biological solubilization and precipitation of heavy metals for the remediation of contaminated media. Journal of Chemical Technology and Biotechnology, 2008, 83, 553-558.	1.6	4
16	Bacterial removal of chromium (VI) and (III) in a continuous system. Biodegradation, 2007, 18, 505-513.	1.5	36
17	Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. Journal of Hazardous Materials, 2006, 135, 40-46.	6.5	174
18	Kinetic study of ferrous sulphate oxidation of Acidithiobacillus ferrooxidans in the presence of heavy metal ions. Enzyme and Microbial Technology, 2005, 36, 301-306.	1.6	24

#	Article	IF	CITATIONS
19	Influence of heavy metals on growth and ferrous sulphate oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures. Process Biochemistry, 2005, 40, 2683-2687.	1.8	41