
Ulrike Tappeiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2488502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
2	Land-use changes and natural reforestation in the Eastern Central Alps. Agriculture, Ecosystems and Environment, 2007, 118, 115-129.	5.3	334
3	Impact of land use changes on mountain vegetation. Applied Vegetation Science, 2002, 5, 173-184.	1.9	330
4	Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology, 2013, 101, 47-57.	4.0	265
5	Stakeholder perceptions of grassland ecosystem services in relation to knowledge on soil fertility and biodiversity. Regional Environmental Change, 2011, 11, 791-804.	2.9	239
6	Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services. Science of the Total Environment, 2019, 651, 928-941.	8.0	212
7	Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosystem Services, 2017, 26, 79-94.	5.4	193
8	Seasonal and interâ€annual variability of the net ecosystem CO ₂ exchange of a temperate mountain grassland: Effects of weather and management. Journal of Geophysical Research, 2008, 113, .	3.3	184
9	Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Science of the Total Environment, 2018, 624, 1429-1442.	8.0	169
10	Effects of land use in alpine grasslands on the probability of landslides. Basic and Applied Ecology, 2003, 4, 271-280.	2.7	160
11	Cultural ecosystem services of mountain regions: Modelling the aesthetic value. Ecological Indicators, 2016, 69, 78-90.	6.3	159
12	Predicting scenic beauty of mountain regions. Landscape and Urban Planning, 2013, 111, 1-12.	7.5	157
13	Ecological and Land Use Studies Along Elevational Gradients. Mountain Research and Development, 2007, 27, 58-65.	1.0	135
14	Plant diversity declines with recent land use changes in European Alps. Plant Ecology, 2009, 202, 195-210.	1.6	135
15	Revealing spatial and temporal patterns of outdoor recreation in the European Alps and their surroundings. Ecosystem Services, 2018, 31, 336-350.	5.4	129
16	Site and management effects on soil microbial properties of subalpine meadows: a study of land abandonment along a north–south gradient in the European Alps. Soil Biology and Biochemistry, 2001, 33, 639-649.	8.8	128
17	Effects of land-use and land-cover pattern on landscape-scale biodiversity in the European Alps. Agriculture, Ecosystems and Environment, 2010, 139, 13-22.	5.3	125
18	Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis. Ecological Economics, 2013, 93, 128-136.	5.7	124

#	Article	IF	CITATIONS
19	Modification of the effective mesh size for measuring landscape fragmentation to solve the boundary problem. Landscape Ecology, 2007, 22, 447-459.	4.2	116
20	Characteristic trajectories of ecosystem services in mountains. Frontiers in Ecology and the Environment, 2017, 15, 150-159.	4.0	115
21	Identifying and mapping the touristsâز، perception of cultural ecosystem services: A case study from an Alpine region. Land Use Policy, 2016, 56, 251-261.	5.6	113
22	Stakeholder perspectives on ecosystem service supply and ecosystem service demand bundles. Ecosystem Services, 2019, 37, 100938.	5.4	112
23	On the Effects of Scale for Ecosystem Services Mapping. PLoS ONE, 2014, 9, e112601.	2.5	110
24	Ecosystem services and economic development in Austrian agricultural landscapes — The impact of policy and climate change scenarios on trade-offs and synergies. Ecological Economics, 2015, 109, 161-174.	5.7	104
25	Land use affects the net ecosystem CO ₂ exchange and its components in mountain grasslands. Biogeosciences, 2010, 7, 2297-2309.	3.3	98
26	Interâ€specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant, Cell and Environment, 1999, 22, 1281-1296.	5.7	94
27	Linking long-term landscape dynamics to the multiple interactions among ecosystem services in the European Alps. Landscape Ecology, 2016, 31, 1903-1918.	4.2	93
28	Climate change versus land-use change—What affects the mountain landscapes more?. Land Use Policy, 2017, 60, 60-72.	5.6	92
29	Mapping the ecosystem service delivery chain: Capacity, flow, and demand pertaining to aesthetic experiences in mountain landscapes. Science of the Total Environment, 2017, 574, 422-436.	8.0	88
30	Distance to nature—A new biodiversity relevant environmental indicator set at the landscape level. Ecological Indicators, 2012, 15, 208-216.	6.3	87
31	Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope. Boundary-Layer Meteorology, 2007, 122, 397-416.	2.3	83
32	Leaf area controls on energy partitioning of a temperate mountain grassland. Biogeosciences, 2008, 5, 421-431.	3.3	80
33	Multiple ecosystem services of a changing Alpine landscape: past, present and future. International Journal of Biodiversity Science, Ecosystem Services & Management, 2013, 9, 123-135.	2.9	80
34	A transnational perspective of global and regional ecosystem service flows from and to mountain regions. Scientific Reports, 2019, 9, 6678.	3.3	76
35	Biodiversity indicators for sustainability monitoring at municipality level: An example of implementation in an alpine region. Ecological Indicators, 2008, 8, 204-223.	6.3	75
36	Determinants of urban–rural land surface temperature differences – A landscape scale perspective. Landscape and Urban Planning, 2015, 134, 33-42.	7.5	73

#	Article	IF	CITATIONS
37	Modelling vegetation patterns using natural and anthropogenic influence factors: preliminary experience with a GIS based model applied to an Alpine area. Ecological Modelling, 1998, 113, 225-237.	2.5	72
38	Exploring socio-cultural values of ecosystem service categories in the Central Alps: the influence of socio-demographic factors and landscape type. Regional Environmental Change, 2016, 16, 2033-2044.	2.9	72
39	Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Regional Environmental Change, 2017, 17, 2251-2264.	2.9	71
40	What drives the future supply of regulating ecosystem services in a mountain forest landscape?. Forest Ecology and Management, 2019, 445, 37-47.	3.2	70
41	Effects of Historical and Likely Future Scenarios of Land Use on Above- and Belowground Vegetation Carbon Stocks of an Alpine Valley. Ecosystems, 2008, 11, 1383-1400.	3.4	68
42	Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images andhydrological modeling. Journal of Hydrology, 2014, 516, 245-257.	5.4	68
43	Impact of land-use change on nitrogen mineralization in subalpine grasslands in the Southern Alps. Biology and Fertility of Soils, 2000, 31, 441-448.	4.3	67
44	An integrative approach for analysing landscape dynamics in diverse cultivated and natural mountain areas. Landscape Ecology, 2009, 24, 611-628.	4.2	66
45	Catalyzing Transformations to Sustainability in the World's Mountains. Earth's Future, 2019, 7, 547-557.	6.3	65
46	Understanding alpine tree line dynamics: An individual-based model. Ecological Modelling, 2008, 218, 235-246.	2.5	63
47	Mapping beneficiaries of ecosystem services flows from Natura 2000 sites. Ecosystem Services, 2014, 9, 170-179.	5.4	63
48	Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Scientific Reports, 2020, 10, 12516.	3.3	63
49	Indigenous livestock breeds as indicators for cultural ecosystem services: A spatial analysis within the Alpine Space. Ecological Indicators, 2018, 94, 55-63.	6.3	60
50	A multi-component, multi-species model of vegetation–atmosphere CO2 and energy exchange for mountain grasslands. Agricultural and Forest Meteorology, 2001, 106, 261-287.	4.8	57
51	Topographical and ecohydrological controls on land surface temperature in an alpine catchment. Ecohydrology, 2010, 3, 189-204.	2.4	56
52	Estimation of Soil Moisture in an Alpine Catchment with RADARSAT2 Images. Applied and Environmental Soil Science, 2011, 2011, 1-12.	1.7	55
53	Using land use/land cover trajectories to uncover ecosystem service patterns across the Alps. Regional Environmental Change, 2017, 17, 2237-2250.	2.9	55
54	Assessing ecosystem service potentials to evaluate terrestrial, coastal and marine ecosystem types in Northern Germany – An expert-based matrix approach. Ecological Indicators, 2020, 112, 106116.	6.3	55

#	Article	IF	CITATIONS
55	Monitoring of Freezing Dynamics in Trees: A Simple Phase Shift Causes Complexity. Plant Physiology, 2017, 173, 2196-2207.	4.8	53
56	Water stress limits transpiration and growth of European larch up to the lower subalpine belt in an innerâ€alpine dry valley. New Phytologist, 2018, 220, 460-475.	7.3	52
57	Microclimate and fluxes of water vapour, sensible heat and carbon dioxide in structurally differing subalpine plant communities in the Central Caucasus. Plant, Cell and Environment, 1996, 19, 403-417.	5.7	51
58	GIS-based modelling of spatial pattern of snow cover duration in an alpine area. Ecological Modelling, 2001, 138, 265-275.	2.5	51
59	Stability analysis for defining management strategies in abandoned mountain landscapes of the Mediterranean basin. Landscape and Urban Planning, 2011, 103, 335-346.	7.5	51
60	Estimation of Soil Moisture in Mountain Areas Using SVR Technique Applied to Multiscale Active Radar Images at C-Band. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 262-283.	4.9	51
61	Decline of rare and specialist species across multiple taxonomic groups after grassland intensification and abandonment. Biodiversity and Conservation, 2018, 27, 3729-3744.	2.6	49
62	Seasonal dynamics of surface runoff in mountain grassland ecosystems differing in land use. Journal of Hydrology, 2010, 385, 95-104.	5.4	47
63	Ecosystem services in mountain regions: experts' perceptions and research intensity. Regional Environmental Change, 2016, 16, 1989-2004.	2.9	47
64	Using conjoint analysis to gain deeper insights into aesthetic landscape preferences. Ecological Indicators, 2019, 96, 202-212.	6.3	47
65	The dark side of biodiversity: Spatial application of the biological soil quality indicator (BSQ). Ecological Indicators, 2015, 53, 240-246.	6.3	46
66	What plant traits tell us: Consequences of land-use change of a traditional agro-forest system on biodiversity and ecosystem service provision. Agriculture, Ecosystems and Environment, 2014, 186, 44-53.	5.3	44
67	Symbolic species as a cultural ecosystem service in the European Alps: insights and open issues. Landscape Ecology, 2018, 33, 711-730.	4.2	44
68	A nitrogen sensitive model of leaf carbon dioxide and water vapour gas exchange: application to 13 key species from differently managed mountain grassland ecosystems. Ecological Modelling, 1998, 113, 179-199.	2.5	43
69	What is socio-ecological research delivering? A literature survey across 25 international LTSER platforms. Science of the Total Environment, 2018, 622-623, 1225-1240.	8.0	43
70	New model to predict rooting in diverse plant community compositions. Ecological Modelling, 2005, 185, 195-211.	2.5	42
71	Polarimetric RADARSAT-2 imagery for soil moisture retrieval in alpine areas. Canadian Journal of Remote Sensing, 2011, 37, 535-547.	2.4	42
72	Can We Model the Scenic Beauty of an Alpine Landscape?. Sustainability, 2013, 5, 1080-1094.	3.2	41

#	Article	IF	CITATIONS
73	Modelling changes in grassland hydrological cycling along an elevational gradient in the Alps. Ecohydrology, 2014, 7, 1453-1473.	2.4	41
74	Disentangling leaf area and environmental effects on the response of the net ecosystem CO ₂ exchange to diffuse radiation. Geophysical Research Letters, 2008, 35, .	4.0	40
75	SPA-LUCC: Developing land-use/cover scenarios in mountain landscapes. Ecological Informatics, 2012, 12, 68-76.	5.2	40
76	Development and validation of a spatial snow-glide model. Ecological Modelling, 2008, 211, 363-374.	2.5	39
77	Classifiers vs. input variables—The drivers in image classification for land cover mapping. International Journal of Applied Earth Observation and Geoinformation, 2009, 11, 423-430.	2.8	39
78	Grassland biomass balance in the European Alps: current and future ecosystem service perspectives. Ecosystem Services, 2020, 45, 101163.	5.4	38
79	Impact of droughts on water provision in managed alpine grasslands in two climatically different regions of the Alps. Ecohydrology, 2015, 8, 1600-1613.	2.4	37
80	The role of land management and elevation in shaping soil microbial communities: Insights from the Central European Alps. Soil Biology and Biochemistry, 2020, 150, 107951.	8.8	37
81	Towards an integrative assessment of land-use type values from the perspective of ecosystem services. Ecosystem Services, 2020, 42, 101082.	5.4	36
82	Effects of past landscape changes on aesthetic landscape values in the European Alps. Landscape and Urban Planning, 2021, 212, 104109.	7.5	35
83	Model simulation of spatial distribution of photosynthesis in structurally differing plant communities in the Central Caucasus. Ecological Modelling, 1998, 113, 201-223.	2.5	34
84	Spatio-temporal landscape analysis in mountainous terrain by means of small format photography: a methodological approach. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39, 885-893.	6.3	33
85	ECOMONT: a combined approach of field measurements and process-based modelling for assessing effects of land-use changes in mountain landscapes. Ecological Modelling, 1998, 113, 167-178.	2.5	32
86	LTSER platforms as a place-based transdisciplinary research infrastructure: learning landscape approach through evaluation. Landscape Ecology, 2019, 34, 1461-1484.	4.2	32
87	Estimation of plant area index of grasslands from measurements of canopy radiation profiles. Agricultural and Forest Meteorology, 2001, 109, 1-12.	4.8	31
88	What can geotagged photographs tell us about cultural ecosystem services of lakes?. Ecosystem Services, 2021, 51, 101354.	5.4	31
89	Plant functional assemblages as indicators of the resilience of grassland ecosystem service provision. Ecological Indicators, 2017, 73, 118-127.	6.3	29
90	Multiscale socio-ecological networks in the age of information. PLoS ONE, 2018, 13, e0206672.	2.5	29

#	Article	IF	CITATIONS
91	How to consider history in landscape ecology: patterns, processes, and pathways. Landscape Ecology, 2021, 36, 2317-2328.	4.2	29
92	Plant communities of mountain grasslands in a broad cross-section of the Eastern Alps. Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 433-443.	1.2	28
93	An integrated method for the mapping of landscape preferences at the regional scale. Ecological Indicators, 2019, 106, 105430.	6.3	28
94	Geographical heterogeneity in mountain grasslands dynamics in the Austrian-Italian Tyrol region. Applied Geography, 2019, 106, 50-59.	3.7	28
95	Title is missing!. Pirineos, 1996, 147-148, 145-172.	0.6	28
96	Canopy structure versus physiology effects on net photosynthesis of mountain grasslands differing in land use. Ecological Modelling, 2003, 170, 407-426.	2.5	27
97	The Stability of Rankings Derived From Composite Indicators: Analysis of the "IL Sole 24 Ore―Quality of Life Report. Social Indicators Research, 2006, 77, 307-331.	2.7	27
98	Influences of changing land use and CO2 concentration on ecosystem and landscape level carbon and water balances in mountainous terrain of the Stubai Valley, Austria. Global and Planetary Change, 2009, 67, 29-43.	3.5	27
99	Analyzing Spatial Congruencies and Mismatches between Supply, Demand and Flow of Ecosystem Services and Sustainable Development. Sustainability, 2019, 11, 2227.	3.2	27
100	Vegetation effects on the water balance of mountain grasslands depend on climatic conditions. Ecohydrology, 2015, 8, 552-569.	2.4	25
101	Definition of the potential treeline in the European Alps and its benefit for sustainability monitoring. Ecological Indicators, 2011, 11, 438-447.	6.3	23
102	Soil moisture monitoring in mountain areas by using highâ€resolution <scp>SAR</scp> images: results from a feasibility study. European Journal of Soil Science, 2014, 65, 852-864.	3.9	23
103	Advancing Precipitation Estimation and Streamflow Simulations in Complex Terrain with X-Band Dual-Polarization Radar Observations. Remote Sensing, 2018, 10, 1258.	4.0	23
104	A model of whole plant gas exchange for herbaceous species from mountain grassland sites differing in land use. Ecological Modelling, 2000, 125, 173-201.	2.5	22
105	Typology of Alpine region using spatial-pattern indicators. Ecological Indicators, 2013, 24, 37-47.	6.3	22
106	Participative Spatial Scenario Analysis for Alpine Ecosystems. Environmental Management, 2017, 60, 679-692.	2.7	22
107	Assessing Freshwater Provision and Consumption in the Alpine Space Applying the Ecosystem Service Concept. Sustainability, 2019, 11, 1131.	3.2	22
108	Effects of Land-Use Changes on Sources, Sinks and Fluxes of Carbon in European Mountain Grasslands. Ecosystems, 2008, 11, 1335-1337.	3.4	21

#	Article	IF	CITATIONS
109	Impact of land use changes on mountain vegetation. Applied Vegetation Science, 2002, 5, 173.	1.9	21
110	Short-time effects of land-use changes on O-horizon in subalpine grasslands. Plant and Soil, 2007, 299, 101-115.	3.7	20
111	Farmers as data sources: Cooperative framework for mapping soil properties for permanent crops in South Tyrol (Northern Italy). Geoderma, 2019, 342, 93-105.	5.1	20
112	Stakeholder perspectives on ecosystem services of mountain lakes in the European Alps. Ecosystem Services, 2022, 53, 101386.	5.4	20
113	Some remarks on the `System of Integrated Environmental and Economic Accounting' of the United Nations. Ecological Economics, 1999, 29, 329-336.	5.7	19
114	Decomposing the land-use specific response of plant functional traits along environmental gradients. Science of the Total Environment, 2017, 599-600, 750-759.	8.0	19
115	Influence of Land-Use Intensification on Vegetation C-Stocks in an Alpine Valley from 1865 to 2003. Ecosystems, 2017, 20, 1391-1406.	3.4	18
116	Agricultural landscapes between intensification and abandonment: the expectations of the public in a Central-Alpine cross-border region. Landscape Research, 2018, 43, 428-442.	1.6	18
117	Canopy structure and light climate of different alpine plant communities: Analysis by means of a model. Theoretical and Applied Climatology, 1989, 40, 81-92.	2.8	17
118	Biodiversity in cultural landscapes: influence of land use intensity on bird assemblages. Landscape Ecology, 2015, 30, 1851-1863.	4.2	17
119	Spatial and temporal variation of benthic macroinvertebrate assemblages during the glacial melt season in an Italian glacier-fed stream. Hydrobiologia, 2019, 827, 123-139.	2.0	17
120	Agent-based modelling of water balance in a social-ecological system: A multidisciplinary approach for mountain catchments. Science of the Total Environment, 2021, 755, 142962.	8.0	17
121	Title is missing!. Pirineos, 1993, 141-142, 97-118.	0.6	17
122	Effects of land cover type on community structure and functional traits of alpine stream benthic macroinvertebrates. Freshwater Biology, 2020, 65, 524-539.	2.4	16
123	Assessing conflicts between winter recreational activities and grouse species. Journal of Environmental Management, 2020, 276, 111194.	7.8	16
124	Stakeholder Perceptions of the Impacts of Rural Funding Scenarios on Mountain Landscapes Across Europe. Ecosystems, 2008, 11, 1368-1382.	3.4	15
125	Using a new PDP modelling approach for land-use and land-cover change predictions: A case study in the Stubai Valley (Central Alps). Ecological Modelling, 2016, 322, 101-114.	2.5	15
126	Symbolic entities in the European Alps: Perception and use of a cultural ecosystem service. Ecosystem Services, 2019, 39, 100980.	5.4	15

#	Article	IF	CITATIONS
127	Morphological and functional correlates with distribution of <i>Murex trunculus</i> L. and <i>Murex brandaris</i> L. (Mollusca, Gastropoda) in the northern Adriatic. Bollettino Di Zoologia, 1981, 48, 191-195.	0.3	14
128	Different management of larch grasslands in the European Alps shows low impact on above- and belowground carbon stocks. Agriculture, Ecosystems and Environment, 2015, 213, 186-193.	5.3	14
129	How do anthropogenic pressures affect the provision of ecosystem services of small mountain lakes?. Anthropocene, 2022, 38, 100336.	3.3	14
130	Integrating disciplinary research into an interdisciplinary framework: A case study in sustainability research. Environmental Modeling and Assessment, 2007, 12, 253-256.	2.2	13
131	Down to future: Transplanted mountain meadows react with increasing phytomass or shifting species composition. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 224, 172-182.	1.2	13
132	Research questions to facilitate the future development of European long-term ecosystem research infrastructures: A horizon scanning exercise. Journal of Environmental Management, 2019, 250, 109479.	7.8	13
133	A simple method to combine snow height and meteorological observations to estimate winter precipitation at sub-daily resolution. Hydrological Sciences Journal, 2016, 61, 2050-2060.	2.6	12
134	"A Gem among the Rocksâ€â€"Identifying and Measuring Visual Preferences for Mountain Lakes. Water (Switzerland), 2021, 13, 1151.	2.7	12
135	Changes in perspective needed to forge †noâ€regret' forestâ€based climate change mitigation strategies. GCB Bioenergy, 2022, 14, 246-257.	5.6	12
136	Simplified and still meaningful: assessing butterfly habitat quality in grasslands with data collected by pupils. Journal of Insect Conservation, 2017, 21, 677-688.	1.4	11
137	Functional spatial units are fundamental for modelling ecosystem services in mountain regions. Applied Geography, 2020, 118, 102200.	3.7	11
138	Rain simulation in patchy landscapes: Insights from a case study in the Central Alps. Catena, 2015, 127, 1-8.	5.0	10
139	Agent-Based Modelling of a Coupled Water Demand and Supply System at the Catchment Scale. Sustainability, 2019, 11, 6178.	3.2	10
140	Ordering 'wilderness': Variations in public representations of wilderness and their spatial distributions. Landscape and Urban Planning, 2020, 202, 103875.	7.5	10
141	Effects of land use and climate on carbon and nitrogen pool partitioning in European mountain grasslands. Science of the Total Environment, 2022, 822, 153380.	8.0	10
142	A protected area between subsistence and development. International Journal of the Commons, 2019, 13, 175.	1.4	9
143	Stream benthic macroinvertebrates abundances over a 6-year monitoring period of an Italian glacier-fed stream. Biodiversity Data Journal, 2019, 7, e33576.	0.8	9
144	Classification of the Sieversio montanae-Nardetum strictae in a cross-section of the Eastern Alps. Plant Ecology, 2011, 212, 105-126.	1.6	8

#	Article	IF	CITATIONS
145	Diurnal Surface Temperature Regimes in Mountain Environments. Physical Geography, 2012, 33, 344-359.	1.4	8
146	The contribution of landscape features, climate and topography in shaping taxonomical and functional diversity of avian communities in a heterogeneous Alpine region. Oecologia, 2022, 199, 499-512.	2.0	8
147	Community-specific hydraulic conductance potential of soil water decomposed for two Alpine grasslands by small-scale lysimetry. Biogeosciences, 2018, 15, 1065-1078.	3.3	7
148	Evidence for the importance of land use, site characteristics and vegetation composition for rooting in European Alps. Scientific Reports, 2021, 11, 11246.	3.3	7
149	Hidden Engineers and Service Providers: Earthworms in Agricultural Land-Use Types of South Tyrol, Italy. Sustainability, 2021, 13, 312.	3.2	7
150	The benefits of considering land cover seasonality in multi-spectral image classification. Journal of Land Use Science, 2012, 7, 1-19.	2.2	6
151	Supporting the Management of Ecosystem Services in Protected Areas: Trade-Offs Between Effort and Accuracy in Evaluation. Journal of Environmental Assessment Policy and Management, 2017, 19, 1750007.	7.9	6
152	Are interest groups different in the factors determining landscape preferences?. Landscape Online, 0, 47, 1-18.	0.0	6
153	Using the Ecosystem Services Concept to Assess Transformation of Agricultural Landscapes in the European Alps. Land, 2022, 11, 49.	2.9	6
154	Recreational ecosystem services of mountain lakes in the European Alps: Preferences, visitor groups and management implications. Journal of Outdoor Recreation and Tourism, 2021, 35, 100421.	2.9	5
155	Identifying significant determinants for acceptance of nature reserves: a case study in the Stilfserjoch National Park, Italy. Eco Mont, 2010, 2, 15-22.	0.1	5
156	Statistical aspects of multilayer perceptrons under data limitations. Computational Statistics and Data Analysis, 2004, 46, 173-188.	1.2	4
157	Management Intensification of Hay Meadows and Fruit Orchards Alters Soil Macro- Invertebrate Communities Differently. Agronomy, 2020, 10, 767.	3.0	4
158	Long-Term Socio-ecological Research in Mountain Regions: Perspectives from the Tyrolean Alps. , 2013, , 505-525.		4
159	First records of Opetiopalpus sabulosus Motschulsky, 1840 (Coleoptera, Cleridae) for the European Alps. Nature Conservation, 0, 34, 119-125.	0.0	4
160	Soil invertebrate abundance, diversity, and community composition across steep high elevation snowmelt gradients in the European Alps. Arctic, Antarctic, and Alpine Research, 2021, 53, 288-299.	1.1	4
161	The combination of measurements and mathematical modelling for assessing canopy structure effects. , 1991, , 161-193.		3
162	Soil Macroinvertebrate Distribution Along a Subalpine Land Use Transect. Mountain Research and Development, 2020, 40, .	1.0	3

#	Article	IF	CITATIONS
163	Swiss stone pine growth benefits less from recent warming than European larch at a dry-inner alpine forest line as it reacts more sensitive to humidity. Agricultural and Forest Meteorology, 2022, 315, 108788.	4.8	3
164	Small Hydropower—Small Ecological Footprint? A Multi-Annual Environmental Impact Analysis Using Aquatic Macroinvertebrates as Bioindicators. Part 1: Effects on Community Structure. Frontiers in Environmental Science, 0, 10, .	3.3	3
165	Multi-source and multi-scale soil moisture dynamic modelling in mountain meadows. , 2013, , .		2
166	Analysis of polarimetric RADARSAT2 images for soil moisture retrieval in an alpine catchment. Proceedings of SPIE, 2010, , .	0.8	1
167	Spatial and temporal mapping of soil moisture content with polarimetric RADARSAT 2 SAR imagery in the Alpine area. , 2011, , .		1
168	Modelling Evapotranspiration and the Surface Energy Budget in Alpine Catchments. , 2012, , .		1
169	Temporal and spatial soil moisture dynamics in mountain meadows by integrating Radarsat 2 images and ground data. , 2014, , .		1
170	Flowering Farmland Competitions in Europe: History, facts and potential interactions with agri-environmental measures. Land Use Policy, 2018, 70, 106-116.	5.6	1
171	The Tyrolean Alps LTSER platform – providing scientific insights for better management of protected areas. Eco Mont, 2017, 9, 35-39.	0.1	1
172	The Classification of Rural Areas in the European Context: Some Remarks on the Article of J. R. Blunden, W. T. R. Pryce and P. Dreyer, Regional Studies 32(2). Regional Studies, 2002, 36, 157-160.	4.4	0
173	Comparison of L and C band polarimetric SAR data for the retrieval of soil moisture in the Alps. , 2011, , \cdot		0
174	How far can be SAR considered a tool for mountain hydrology?. Proceedings of SPIE, 2013, , .	0.8	0
175	Semi-arid watershed management: the experimental farm and representative catchment of the High Mountains of Sinai Peninsula. International Journal of Water, 2015, 9, 1.	0.1	0
176	"Kulawi" – strategies for the cultural landscape of the future. Ekologia, 2011, 30, 187-198.	0.8	0