Yuhang Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/248823/publications.pdf Version: 2024-02-01

Υμμανίς Ιινο

#	Article	IF	CITATIONS
1	Kinetic Monte Carlo simulation of ZrO ₂ coating deposited by EBâ€PVD. Journal of the American Ceramic Society, 2022, 105, 830-841.	3.8	4
2	Mechanistic insights into proton diffusion in Σ3 BaZrO3 (210)[001] tilt grain boundary. Ceramics International, 2022, 48, 2097-2104.	4.8	4
3	Strainâ€induced tunable energy barrier of proton diffusion in Yâ€doped <scp> BaCeO ₃ </scp> and Yâ€doped <scp> BaZrO ₃ </scp> . International Journal of Energy Research, 2022, 46, 7816-7824.	4.5	5
4	On the anomalous diffusion of proton in Y-doped BaZrO3 perovskite oxide. Solid State Ionics, 2022, 376, 115859.	2.7	5
5	Electron Irradiation Induces the Conversion from 2H-WSe ₂ to 1T-WSe ₂ and Promotes the Performance of Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 2420-2428.	6.7	10
6	The Abnormally Excellent Figure of Merit of 14,14,18-Graphyne at Room Temperature: A Study on the Thermoelectric Characteristic of Graphyne. ACS Applied Energy Materials, 2022, 5, 6363-6372.	5.1	6
7	Strain-resilient electrical functionality in thin-film metal electrodes using two-dimensional interlayers. Nature Electronics, 2021, 4, 126-133.	26.0	67
8	Toward Durable Protonic Ceramic Cells: Hydration-Induced Chemical Expansion Correlates with Symmetry in the Y-Doped BaZrO ₃ –BaCeO ₃ Solid Solution. Journal of Physical Chemistry C, 2021, 125, 26216-26228.	3.1	12
9	The role of A-site ion on proton diffusion in perovskite oxides (ABO3). Journal of Power Sources, 2020, 445, 227327.	7.8	39
10	Atomistic simulations of anisotropic mechanical behavior in nonâ€stoichiometric gadoliniaâ€doped ceria solid electrolytes. International Journal of Energy Research, 2020, 44, 3547-3557.	4.5	4
11	Understanding the effect of Ce and Zr on chemical expansion in yttrium doped strontium cerate and zirconate by high temperature X-ray analysis and density functional theory. Solid State Ionics, 2019, 333, 1-8.	2.7	13
12	Atomistic Simulations on the Tensile Deformation Behaviors of Threeâ€Đimensional Graphene. Physica Status Solidi (B): Basic Research, 2018, 255, 1700680.	1.5	4
13	Mechanistic Insights into Hydration of Solid Oxides. Chemistry of Materials, 2018, 30, 138-144.	6.7	26
14	Phonon Transport of Zigzag/Armchair Graphene Superlattice Nanoribbons. International Journal of Thermophysics, 2018, 39, 1.	2.1	2
15	Tunable phase stability and contact resistance of monolayer transition metal dichalcogenides contacts with metal. Npj 2D Materials and Applications, 2018, 2, .	7.9	17
16	Atomistic Simulations on the Tensile Deformation Behaviors of Three-Dimensional Graphene (Phys.) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf :
17	Tunable thermal transport properties of graphene by single-vacancy point defect. Applied Thermal Engineering, 2017, 113, 1419-1425.	6.0	22

Doping-Induced Tunable Wettability and Adhesion of Graphene. Nano Letters, 2016, 16, 4708-4712. 9.1 119

YUHANG JING

#	Article	IF	CITATIONS
19	Low thermal conductivity of graphyne nanotubes from molecular dynamics study. Physical Review B, 2015, 91, .	3.2	65
20	Mechanical properties of kinked silicon nanowires. Physica B: Condensed Matter, 2015, 462, 59-63.	2.7	13
21	The unexpected non-monotonic inter-layer bonding dependence of the thermal conductivity of bilayered boron nitride. Nanoscale, 2015, 7, 7143-7150.	5.6	24
22	On the origin of abnormal phonon transport of graphyne. International Journal of Heat and Mass Transfer, 2015, 85, 880-889.	4.8	27
23	The thermal transport properties of single-crystalline nanowires covered with amorphous shell: A molecular dynamics study. Journal of Non-Crystalline Solids, 2014, 387, 132-138.	3.1	16
24	Electronic transport properties of graphyne and its family. Computational Materials Science, 2013, 78, 22-28.	3.0	43
25	Thermal conductivity of hybrid graphene/silicon heterostructures. Journal of Applied Physics, 2013, 114, .	2.5	25
26	Atomistic simulations on the mechanical properties of silicene nanoribbons under uniaxial tension. Physica Status Solidi (B): Basic Research, 2013, 250, 1505-1509.	1.5	33
27	Atomistic simulations on the mechanical properties of silicene nanoribbons under uniaxial tension. Physica Status Solidi (B): Basic Research, 2013, 250, .	1.5	0
28	Investigation of the thermalâ€ŧransport properties for silicon nanofilm covered with graphene via nonequilibrium molecular dynamics. Physica Status Solidi (B): Basic Research, 2012, 249, 1728-1734.	1.5	6
29	Molecular dynamics simulations of the mechanical properties of crystalline/amorphous silicon core/shell nanowires. Physica B: Condensed Matter, 2010, 405, 2413-2417.	2.7	32
30	Molecular dynamics simulations of the tensile and melting behaviours of silicon nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 685-689.	2.7	32