Tomasz Zieliński

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2487936/publications.pdf Version: 2024-02-01

Τομλες Ζιειιά εκι

#	Article	IF	CITATIONS
1	Period Estimation and Rhythm Detection in Timeseries Data Using BioDare2, the Free, Online, Community Resource. Methods in Molecular Biology, 2022, 2398, 15-32.	0.4	2
2	SynBio2Easy—a biologist-friendly tool for batch operations on SBOL designs with Excel inputs. Synthetic Biology, 2022, 7, ysac002.	1.2	3
3	PyOmeroUpload: A Python toolkit for uploading images and metadata to OMERO. Wellcome Open Research, 2020, 5, 96.	0.9	4
4	PyOmeroUpload: A Python toolkit for uploading images and metadata to OMERO. Wellcome Open Research, 2020, 5, 96.	0.9	2
5	Better research by efficient sharing: evaluation of free management platforms for synthetic biology designs. Synthetic Biology, 2019, 4, ysz016.	1.2	9
6	The grant is dead, long live the data - migration as a pragmatic exit strategy for research data preservation. Wellcome Open Research, 2019, 4, 104.	0.9	2
7	The grant is dead, long live the data - migration as a pragmatic exit strategy for research data preservation. Wellcome Open Research, 2019, 4, 104.	0.9	4
8	A hybrid macrocyclic anion receptor exploiting the pyrrole-2,5-diacetamide unit. RSC Advances, 2016, 6, 41568-41571.	1.7	7
9	Strengths and Limitations of Period Estimation Methods for Circadian Data. PLoS ONE, 2014, 9, e96462.	1.1	268
10	7,7′â€Diaminoâ€2,2′â€diindolylmethane: A Building Block for Highly Efficient and Selective Anion Receptors—Studies in Solution and in the Solid State. Chemistry - A European Journal, 2012, 18, 13686-13701.	1.7	20
11	Benzopyrrole derivatives as effective anion receptors in highly competitive solvents. Pure and Applied Chemistry, 2011, 83, 1543-1554.	0.9	11
12	7,7′-Diureido-2,2′-diindolylmethanes: Anion Receptors Effective in a Highly Competitive Solvent, Methanol. Organic Letters, 2010, 12, 1076-1078.	2.4	53
13	Bishydrazide Derivatives of Isoindoline as Simple Anion Receptors. Journal of Organic Chemistry, 2009, 74, 1525-1530.	1.7	38
14	Anion receptors based on 7,7′-diamido-2,2′-diindolylmethane. Chemical Communications, 2009, , 4560.	2.2	56
15	Bisamides Derived from Azuleneâ€1,3―and â€5,7â€dicarboxylic Acids as New Building Blocks for Anion Receptors. Chemistry - A European Journal, 2008, 14, 838-846.	1.7	24
16	Synthesis, structure and the binding properties of the amide-based anion receptors derived from 1H-indole-7-amine. Tetrahedron, 2008, 64, 568-574.	1.0	41
17	Synthesis, structure, and complexing properties of macrocyclic receptors for anions. Pure and Applied Chemistry, 2007, 79, 1087-1096.	0.9	31
18	Structural studies of new chiral nickel (II) complexes of cyclams: The influence of a systematically varied number of amide groups. Polyhedron, 2005, 24, 2981-2987.	1.0	2

Tomasz Zieliński

#	Article	IF	CITATIONS
19	The azulene moiety as a chromogenic building block for anion receptors. Tetrahedron Letters, 2005, 46, 6231-6234.	0.7	33
20	Structure-driven design and synthesis of chiral dioxocyclam derivatives. Tetrahedron, 2005, 61, 9031-9041.	1.0	10
21	Thioamides versus amides in anion binding. Tetrahedron, 2005, 61, 4081-4089.	1.0	70
22	Structural aspects of phase transition in pyrrole-2,5-dithioamide single crystals. Journal of Physical Organic Chemistry, 2005, 18, 864-869.	0.9	9
23	A simple synthesis of chiral macrocyclic tetraamides derived from α-amino acids. Tetrahedron: Asymmetry, 2002, 13, 2053-2059.	1.8	26