
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2487923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nature-Inspired O-Benzyl Oxime-Based Derivatives as New Dual-Acting Agents Targeting Aldose Reductase and Oxidative Stress. Biomolecules, 2022, 12, 448.	1.8	11
2	Aurones: A Golden Resource for Active Compounds. Molecules, 2022, 27, 2.	1.7	25
3	Preclinical Development of FA5, a Novel AMP-Activated Protein Kinase (AMPK) Activator as an Innovative Drug for the Management of Bowel Inflammation. International Journal of Molecular Sciences, 2021, 22, 6325.	1.8	5
4	Histamine signaling and metabolism identify potential biomarkers and therapies for lymphangioleiomyomatosis. EMBO Molecular Medicine, 2021, 13, e13929.	3.3	6
5	Lenvatinib: an investigational agent for the treatment of differentiated thyroid cancer. Expert Opinion on Investigational Drugs, 2021, 30, 913-921.	1.9	3
6	Identification of novel SIRT1 activators endowed with cardioprotective profile. European Journal of Pharmaceutical Sciences, 2021, 165, 105930.	1.9	5
7	A Selective Competitive Inhibitor of Aldehyde Dehydrogenase 1A3 Hinders Cancer Cell Growth, Invasiveness and Stemness In Vitro. Cancers, 2021, 13, 356.	1.7	21
8	Aldehyde Dehydrogenases and Prostate Cancer: Shedding Light on Isoform Distribution to Reveal Druggable Target. Biomedicines, 2020, 8, 569.	1.4	8
9	Oxy-imino saccharidic derivatives as a new structural class of aldose reductase inhibitors endowed with anti-oxidant activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1194-1205.	2.5	5
10	Progress in the Field of Aldehyde Dehydrogenase Inhibitors: Novel Imidazo[1,2- <i>a</i>]pyridines against the 1A Family. ACS Medicinal Chemistry Letters, 2020, 11, 963-970.	1.3	15
11	Novel treatments for anaplastic thyroid carcinoma. Cland Surgery, 2020, 9, S28-S42.	0.5	69
12	Imidazo[1,2- <i>a</i>]pyridine Derivatives as Aldehyde Dehydrogenase Inhibitors: Novel Chemotypes to Target Glioblastoma Stem Cells. Journal of Medicinal Chemistry, 2020, 63, 4603-4616.	2.9	38
13	Identification of ALDH1A3 as a Viable Therapeutic Target in Breast Cancer Metastasis–Initiating Cells. Molecular Cancer Therapeutics, 2020, 19, 1134-1147.	1.9	17
14	Dual Kit/Aur Inhibitors as Chemosensitizing Agents for the Treatment of Melanoma: Design, Synthesis, Docking Studies and Functional Investigation. Scientific Reports, 2019, 9, 9943.	1.6	4
15	Synthesis, biological evaluation and molecular modeling of novel selective COX-2 inhibitors: sulfide, sulfoxide, and sulfone derivatives of 1,5-diarylpyrrol-3-substituted scaffold. Bioorganic and Medicinal Chemistry, 2019, 27, 115045.	1.4	21
16	Synthesis and investigation of polyhydroxylated pyrrolidine derivatives as novel chemotypes showing dual activity as glucosidase and aldose reductase inhibitors. Bioorganic Chemistry, 2019, 92, 103298.	2.0	13
17	Recent advances in precision medicine for the treatment of anaplastic thyroid cancer. Expert Review of Precision Medicine and Drug Development, 2019, 4, 37-49.	0.4	3
18	Lysozyme activity in donkey milk. International Dairy Journal, 2019, 96, 98-101.	1.5	20

#	Article	IF	CITATIONS
19	Aldose reductase inhibitors: 2013-present. Expert Opinion on Therapeutic Patents, 2019, 29, 199-213.	2.4	62
20	A 2,3-diphenylpyrido[1,2-a] pyrimidin-4-one derivative inhibits specific angiogenic factors induced by TNF-α. Saudi Pharmaceutical Journal, 2019, 27, 1174-1181.	1.2	0
21	Challenging clinically unresponsive medullary thyroid cancer: Discovery and pharmacological activity of novel RET inhibitors. European Journal of Medicinal Chemistry, 2018, 150, 491-505.	2.6	13
22	New insights in the structure-activity relationships of 2-phenylamino-substituted benzothiopyrano[4,3-d]pyrimidines as kinase inhibitors. European Journal of Medicinal Chemistry, 2018, 150, 446-456.	2.6	7
23	Antineoplastic Effect of Lenvatinib and Vandetanib in Primary Anaplastic Thyroid Cancer Cells Obtained From Biopsy or Fine Needle Aspiration. Frontiers in Endocrinology, 2018, 9, 764.	1.5	19
24	Vandetanib has antineoplastic activity in anaplastic thyroid cancer, in vitro and in vivo. Oncology Reports, 2018, 39, 2306-2314.	1.2	21
25	Lenvatinib exhibits antineoplastic activity in anaplastic thyroid cancer in vitro and in vivo. Oncology Reports, 2018, 39, 2225-2234.	1.2	38
26	Acid Derivatives of Pyrazolo[1,5-a]pyrimidine as Aldose Reductase Differential Inhibitors. Cell Chemical Biology, 2018, 25, 1414-1418.e3.	2.5	16
27	FA-5, a novel AMP-activated protein kinase (AMPK) activator, as a new pharmacological tool for the management of bowel inflammation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-5-2.	0.0	0
28	Cyclodextrin-based nanosponges for the targeted delivery of the anti-restenotic agent DB103: A novel opportunity for the local therapy of vessels wall subjected to percutaneous intervention. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 276-285.	2.0	21
29	Novel therapeutic clues in thyroid carcinomas: The role of targeting cancer stem cells. Medicinal Research Reviews, 2017, 37, 1299-1317.	5.0	34
30	N -(Aroyl)- N -(arylmethyloxy)-α-alanines: Selective inhibitors of aldose reductase. Bioorganic and Medicinal Chemistry, 2017, 25, 3068-3076.	1.4	13
31	Quinazolinone-based rhodanine-3-acetic acids as potent aldose reductase inhibitors: Synthesis, functional evaluation and molecular modeling study. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4760-4764.	1.0	20
32	Novel quinazolinone-based 2,4-thiazolidinedione-3-acetic acid derivatives as potent aldose reductase inhibitors. Future Medicinal Chemistry, 2017, 9, 2147-2166.	1.1	14
33	Synthesis and Functional Evaluation of Novel Aldose Reductase Inhibitors Bearing a Spirobenzopyran Scaffold. Open Medicinal Chemistry Journal, 2017, 11, 9-23.	0.9	2
34	Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug. International Journal of Nanomedicine, 2016, 11, 69.	3.3	30
35	A Series of COXâ€2 Inhibitors Endowed with NOâ€Releasing Properties: Synthesis, Biological Evaluation, and Docking Analysis. ChemMedChem, 2016, 11, 1804-1811.	1.6	6
36	Lead Optimization of 2-Phenylindolylglyoxylyldipeptide Murine Double Minute (MDM)2/Translocator Protein (TSPO) Dual Inhibitors for the Treatment of Gliomas. Journal of Medicinal Chemistry, 2016, 59, 4526-4538.	2.9	28

#	Article	IF	CITATIONS
37	FOXD1–ALDH1A3 Signaling Is a Determinant for the Self-Renewal and Tumorigenicity of Mesenchymal Glioma Stem Cells. Cancer Research, 2016, 76, 7219-7230.	0.4	120
38	1,2-Benzisothiazole Derivatives Bearing 4-, 5-, or 6-Alkyl/arylcarboxamide Moieties Inhibit Carbonic Anhydrase Isoform IX (CAIX) and Cell Proliferation under Hypoxic Conditions. Journal of Medicinal Chemistry, 2016, 59, 6547-6552.	2.9	20
39	CLM29 and CLM24, pyrazolopyrimidine derivatives, have antitumoral activity in vitro in anaplastic thyroid cancer, with or without BRAF mutation. Endocrine, 2016, 53, 136-144.	1.1	12
40	Sulfonamides incorporating heteropolycyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II, IX and XII. Bioorganic and Medicinal Chemistry, 2016, 24, 921-927.	1.4	18
41	Pyrazolopyrimidine Derivatives as Antineoplastic Agents: with a Special Focus on Thyroid Cancer. Mini-Reviews in Medicinal Chemistry, 2015, 16, 86-93.	1.1	17
42	Synthesis, biological evaluation and docking analysis of a new series of methylsulfonyl and sulfamoyl acetamides and ethyl acetates as potent COX-2 inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 810-820.	1.4	21
43	Deepening the Topology of the Translocator Protein Binding Site by Novel <i>N</i> , <i>N</i> -Dialkyl-2-arylindol-3-ylglyoxylamides. Journal of Medicinal Chemistry, 2015, 58, 6081-6092.	2.9	31
44	Investigation of new 2-aryl substituted Benzothiopyrano[4,3-d]pyrimidines as kinase inhibitors targeting vascular endothelial growth factor receptor 2. European Journal of Medicinal Chemistry, 2015, 103, 29-43.	2.6	17
45	Synthetic analogues of flavonoids with improved activity against platelet activation and aggregation as novel prototypes of food supplements. Food Chemistry, 2015, 175, 494-499.	4.2	15
46	Inhibition of Ocular Aldose Reductase by a New Benzofuroxane Derivative Ameliorates Rat Endotoxic Uveitis. Mediators of Inflammation, 2014, 2014, 1-9.	1.4	12
47	CLM29, a multi-target pyrazolopyrimidine derivative, has anti-neoplastic activity in medullary thyroid cancer in vitro and in vivo. Molecular and Cellular Endocrinology, 2014, 393, 56-64.	1.6	21
48	CLM3, a Multitarget Tyrosine Kinase Inhibitor With Antiangiogenic Properties, Is Active Against Primary Anaplastic Thyroid Cancer In Vitro and In Vivo. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E572-E581.	1.8	46
49	A novel 2,3-diphenyl-4H-pyrido[1,2-a]pyrimidin-4-one derivative inhibits endothelial cell dysfunction and smooth muscle cell proliferation/activation. European Journal of Medicinal Chemistry, 2014, 72, 102-109.	2.6	18
50	Antineoplastic activity of the multitarget tyrosine kinase inhibitors CLM3 and CLM94 in medullary thyroid cancer inÂvitro. Surgery, 2014, 156, 1167-1176.	1.0	17
51	Structure-Based Optimization of Tyrosine Kinase Inhibitor CLM3 . Design, Synthesis, Functional Evaluation, and Molecular Modeling Studies Journal of Medicinal Chemistry, 2014, 57, 1225-1235.	2.9	18
52	Phenylpyrazolo[1,5- <i>a</i>]quinazolin-5(4 <i>H</i>)-one: A Suitable Scaffold for the Development of Noncamptothecin Topoisomerase I (Top1) Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 7458-7462.	2.9	43
53	PMMA/Polysaccharides Nanofilm Loaded with Adenosine Deaminase Inhibitor for Targeted Anti-inflammatory Drug Delivery. Langmuir, 2013, 29, 13190-13197.	1.6	32
54	Design, synthesis and biological evaluation of new classes of thieno[3,2-d]pyrimidinone and thieno[1,2,3]triazine as inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2). European Journal of Medicinal Chemistry, 2013, 63, 765-781.	2.6	46

#	Article	IF	CITATIONS
55	A New Approach to Control the Enigmatic Activity of Aldose Reductase. PLoS ONE, 2013, 8, e74076.	1.1	39
56	Medicinal Chemistry of Indolylglyoxylamide TSPO High Affinity Ligands with Anxiolytic-Like Effects. Current Topics in Medicinal Chemistry, 2012, 12, 333-351.	1.0	6
57	Adenosine Deaminase in the Modulation of Immune System and its Potential as a Novel Target for Treatment of Inflammatory Disorders. Current Drug Targets, 2012, 13, 842-862.	1.0	128
58	Geometrically Constrained Derivatives of Indolylglyoxylamides as Ligands Binding the GABAA/BzR Complex. Current Topics in Medicinal Chemistry, 2012, 12, 312-320.	1.0	1
59	Medicinal Chemistry of Indolylglyoxylamide GABAA/BzR High Affinity Ligands: Identification of Novel Anxiolytic/Non Sedative Agents. Current Topics in Medicinal Chemistry, 2012, 12, 286-311.	1.0	8
60	Benzofuroxane Derivatives as Multi-Effective Agents for the Treatment of Cardiovascular Diabetic Complications. Synthesis, Functional Evaluation, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2012, 55, 10523-10531.	2.9	24
61	Tricyclic Sulfonamides Incorporating Benzothiopyrano[4,3-c]pyrazole and Pyridothiopyrano[4,3-c]pyrazole Effectively Inhibit α- and β-Carbonic Anhydrase: X-ray Crystallography and Solution Investigations on 15 Isoforms. Journal of Medicinal Chemistry, 2012, 55, 9619-9629.	2.9	35
62	Sampling protein motion and solvent effect during ligand binding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1467-1472.	3.3	100
63	CLM94, a Novel Cyclic Amide with Anti-VEGFR-2 and Antiangiogenic Properties, Is Active against Primary Anaplastic Thyroid Cancer in Vitro and in Vivo. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E528-E536.	1.8	49
64	3-Aryl-[1,2,4]triazino[4,3- <i>a</i>]benzimidazol-4(10 <i>H</i>)-one: A Novel Template for the Design of Highly Selective A _{2B} Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2012, 55, 1490-1499.	2.9	28
65	Identification of novel molecular scaffolds for the design of MMP-13 inhibitors: A first round of lead optimization. European Journal of Medicinal Chemistry, 2012, 47, 143-152.	2.6	25
66	Progresses in the pursuit of aldose reductase inhibitors: The structure-based lead optimization step. European Journal of Medicinal Chemistry, 2012, 51, 216-226.	2.6	41
67	Non-Nucleoside Inhibitors of Human Adenosine Kinase: Synthesis, Molecular Modeling, and Biological Studies. Journal of Medicinal Chemistry, 2011, 54, 1401-1420.	2.9	27
68	Novel Pyrazolopyrimidine Derivatives as Tyrosine Kinase Inhibitors with Antitumoral Activity in Vitro and in Vivo in Papillary Dedifferentiated Thyroid Cancer. Endocrinology, 2011, 152, 334-334.	1.4	1
69	Tertiary amides with a five-membered heteroaromatic ring as new probes for the translocator protein. European Journal of Medicinal Chemistry, 2011, 46, 4506-4520.	2.6	15
70	Antiproliferative and proapoptotic activity of CLM3, a novel multiple tyrosine kinase inhibitor, alone and in combination with SN-38 on endothelial and cancer cells. Biochemical Pharmacology, 2011, 81, 1309-1316.	2.0	26
71	Derivatives of Benzimidazolâ€2â€ylquinoline and Benzimidazolâ€2â€ylisoquinoline as Selective A ₁ Adenosine Receptor Antagonists with Stimulant Activity on Human Colon Motility. ChemMedChem, 2011, 6, 1909-1918.	1.6	16
72	Synthesis and Biological Evaluation of 2′â€Oxoâ€2,3â€dihydroâ€3′ <i>H</i> ― spiro[chromeneâ€4,5′â€{1,3]oxazolidin]â€3′yl]acetic Acid Derivatives as Aldose Reductase Inhibitors. Arch Der Pharmazie, 2011, 344, 372-385.	iv2.1	21

#	Article	IF	CITATIONS
73	Identification of 5-arylidene-4-thiazolidinone derivatives endowed with dual activity as aldose reductase inhibitors and antioxidant agents for the treatment of diabetic complications. European Journal of Medicinal Chemistry, 2011, 46, 2797-2806.	2.6	94
74	Receptor Tyrosine Kinase Kit and Gastrointestinal Stromal Tumours: An Overview. Current Medicinal Chemistry, 2011, 18, 2893-2903.	1.2	7
75	Novel Pyrazolopyrimidine Derivatives as Tyrosine Kinase Inhibitors with Antitumoral Activity in Vitro and in Vivo in Papillary Dedifferentiated Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E288-E296.	1.8	71
76	Anti-ischaemic activity of an antioxidant aldose reductase inhibitor on diabetic and non-diabetic rat hearts. Journal of Pharmacy and Pharmacology, 2010, 62, 107-113.	1.2	6
77	The Blockade of Adenosine Deaminase Ameliorates Chronic Experimental Colitis through the Recruitment of Adenosine A _{2A} and A ₃ Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 434-442.	1.3	47
78	Recent Advances in the Development of Dual Topoisomerase I and II Inhibitors as Anticancer Drugs. Current Medicinal Chemistry, 2010, 17, 4270-4290.	1.2	125
79	A3 Receptor Ligands: Past, Present and Future Trends. Current Topics in Medicinal Chemistry, 2010, 10, 942-975.	1.0	11
80	Allosteric Modulators for Adenosine Receptors: An Alternative to the Orthosteric Ligands. Current Topics in Medicinal Chemistry, 2010, 10, 976-992.	1.0	10
81	Novel Irreversible Fluorescent Probes Targeting the 18 kDa Translocator Protein: Synthesis and Biological Characterization. Journal of Medicinal Chemistry, 2010, 53, 4085-4093.	2.9	25
82	Novel <i>N</i> ² -Substituted Pyrazolo[3,4- <i>d</i>]pyrimidine Adenosine A ₃ Receptor Antagonists: Inhibition of A ₃ -Mediated Human Glioblastoma Cell Proliferation ^{â€} . Journal of Medicinal Chemistry, 2010, 53, 3954-3963.	2.9	50
83	Synthesis and biological activity of 1,4-dihydrobenzothiopyrano[4,3-c]pyrazole derivatives, novel pro-apoptotic mitochondrial targeted agents. Bioorganic and Medicinal Chemistry, 2009, 17, 326-336.	1.4	26
84	ldentification of Anxiolytic/Nonsedative Agents among Indol-3-ylglyoxylamides Acting as Functionally Selective Agonists at the γ-Aminobutyric Acid-A (GABA _A) α ₂ Benzodiazepine Receptor. Journal of Medicinal Chemistry, 2009, 52, 3723-3734.	2.9	27
85	Benzothiopyranoindole-Based Antiproliferative Agents: Synthesis, Cytotoxicity, Nucleic Acids Interaction, and Topoisomerases Inhibition Properties. Journal of Medicinal Chemistry, 2009, 52, 5429-5441.	2.9	30
86	Pursuing Aldose Reductase Inhibitors through in Situ Cross-Docking and Similarity-Based Virtual Screening. Journal of Medicinal Chemistry, 2009, 52, 5578-5581.	2.9	36
87	Computational Studies of Epidermal Growth Factor Receptor: Docking Reliability, Three-Dimensional Quantitative Structureâ^'Activity Relationship Analysis, and Virtual Screening Studies. Journal of Medicinal Chemistry, 2009, 52, 964-975.	2.9	34
88	Exploiting the Pyrazolo[3,4-d]pyrimidin-4-one Ring System as a Useful Template To Obtain Potent Adenosine Deaminase Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 1681-1692.	2.9	44
89	Synthesis andin vitroantiproliferative activity of new substituted benzo[3′,2′:5,6]thiopyrano[4,3-d]pyrimidines. Journal of Heterocyclic Chemistry, 2008, 45, 745-749.	1.4	14
90	Acetic Acid Aldose Reductase Inhibitors Bearing a Five-Membered Heterocyclic Core with Potent Topical Activity in a Visual Impairment Rat Model. Journal of Medicinal Chemistry, 2008, 51, 3182-3193.	2.9	47

#	Article	IF	CITATIONS
91	Anxiolytic-like Effects of <i>N</i> , <i>N</i> -Dialkyl-2-phenylindol-3-ylglyoxylamides by Modulation of Translocator Protein Promoting Neurosteroid Biosynthesis. Journal of Medicinal Chemistry, 2008, 51, 5798-5806.	2.9	80
92	Derivatives of 4-Amino-6-hydroxy-2-mercaptopyrimidine as Novel, Potent, and Selective A ₃ Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2008, 51, 1764-1770.	2.9	54
93	Inhibition of Adenosine Deaminase Attenuates Inflammation in Experimental Colitis. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 435-442.	1.3	96
94	New Fluorescent 2-Phenylindolglyoxylamide Derivatives as Probes Targeting the Peripheral-Type Benzodiazepine Receptor:Â Design, Synthesis, and Biological Evaluation. Journal of Medicinal Chemistry, 2007, 50, 404-407.	2.9	46
95	Evidence for a Novel Binding Site Conformer of Aldose Reductase in Ligand-Bound Stateâ€. Journal of Molecular Biology, 2007, 369, 186-197.	2.0	33
96	Novel N-Substituted Indol-3-ylglyoxylamides Probing the LDiand L1/L2Lipophilic Regions of the Benzodiazepine Receptor Site in Search for Subtype-Selective Ligandsâ€. Journal of Medicinal Chemistry, 2007, 50, 1627-1634.	2.9	21
97	Pyrido[1,2- <i>a</i>]pyrimidin-4-one Derivatives as a Novel Class of Selective Aldose Reductase Inhibitors Exhibiting Antioxidant Activity. Journal of Medicinal Chemistry, 2007, 50, 4917-4927.	2.9	130
98	5-Amino-2-phenyl[1,2,3]triazolo[1,2-a][1,2,4]benzotriazin-1-one:  A Versatile Scaffold To Obtain Potent and Selective A3 Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2007, 50, 5676-5684.	2.9	22
99	How Reliable Are Current Docking Approaches for Structure-Based Drug Design? Lessons from Aldose Reductase. Angewandte Chemie - International Edition, 2007, 46, 3575-3578.	7.2	53
100	Refinement of the Benzodiazepine Receptor Site Topology by Structureâ^'Activity Relationships of NewN-(Heteroarylmethyl)indol-3-ylglyoxylamides. Journal of Medicinal Chemistry, 2006, 49, 2489-2495.	2.9	22
101	Spirohydantoin derivatives of thiopyrano[2,3-b]pyridin-4(4H)-one as potent in vitro and in vivo aldose reductase inhibitors. Bioorganic and Medicinal Chemistry, 2005, 13, 491-499.	1.4	34
102	2-(Benzimidazol-2-yl)quinoxalines:Â A Novel Class of Selective Antagonists at Human A1and A3Adenosine Receptors Designed by 3D Database Searching. Journal of Medicinal Chemistry, 2005, 48, 8253-8260.	2.9	49
103	Synthesis and Benzodiazepine Receptor Affinity of Derivatives of the New Tricyclic Heteroaromatic System Pyrido[3?,2?:5,6]thiopyrano[4,3-c]pyridazin-3(2H,5H)-one. Archiv Der Pharmazie, 2005, 338, 126-132.	2.1	3
104	Synthesis of New Heterocyclic Ring Systems via [1,3,5]Triazino[1,2-a]benzimidazole Derivatives. Journal of Heterocyclic Chemistry, 2005, 42, 1417-1422.	1.4	3
105	Synthesis and Benzodiazepine Receptor Affinity of Derivatives of the New Tricyclic Heteroaromatic System Pyrido[3′,2′:5,6]thiopyrano[4,3-c]pyridazin-3(2H,5H)-one ChemInform, 2005, 36, no.	0.1	0
106	Naphtho[1,2-d]isothiazole Acetic Acid Derivatives as a Novel Class of Selective Aldose Reductase Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 6897-6907.	2.9	53
107	Novel, Highly Potent Adenosine Deaminase Inhibitors Containing the Pyrazolo[3,4-d]pyrimidine Ring System. Synthesis, Structureâ^'Activity Relationships, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2005, 48, 5162-5174.	2.9	47
108	A1 adenosine receptor antagonists, 3-aryl[1,2,4]triazino[4,3-a]benzimidazol-4-(10H)-ones (ATBIs) andN-alkyl andN-acyl-(7-substituted-2-phenylimidazo[1,2-a][1,3,5]triazin-4-yl)amines (ITAs): Different recognition of bovine and human binding sites. Drug Development Research, 2004, 63, 1-7.	1.4	20

#	Article	IF	CITATIONS
109	Synthesis of Novel Pyrido[3′,2′:5,6]thiopyrano[3,2-b]indol-5(6H)-ones and 6H-Pyrido[3′,2′:5,6]thiopyrano[4,3-b]quinolines, Two New Heterocyclic Ring Systems ChemInform, 2003, 34, no.	0.1	0
110	Novel, Highly Potent Aldose Reductase Inhibitors:  Cyano(2-oxo-2,3-dihydroindol-3-yl)acetic Acid Derivatives. Journal of Medicinal Chemistry, 2003, 46, 1419-1428.	2.9	39
111	Synthesis of novel pyrido[3′,2′:5,6]thiopyrano[3,2-b]indol-5(6H)-ones and 6H-pyrido[3′,2′:5,6]thiopyrano[4,3-b]quinolines, two new heterocyclic ring systems. Journal of Heterocyclic Chemistry, 2002, 39, 1001-1006.	1.4	19
112	[1,2,4]Triazino[4,3-a]benzimidazole Acetic Acid Derivatives:Â A New Class of Selective Aldose Reductase Inhibitors. Journal of Medicinal Chemistry, 2001, 44, 4359-4369.	2.9	40
113	3-Aryl[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-ones:Â A New Class of Selective A1Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2001, 44, 316-327.	2.9	56
114	Synthesis of a novel purineâ€containing heterocyclic ring system: 8,10â€Dimethylindolo[2′,3′:5,6][1,2,4]triazino[4,3â€ <i>f</i>]purineâ€9,11(8 <i>H</i> , 10 <i>H</i> , 13 <i>H Journal of Heterocyclic Chemistry, 2000, 37, 373-377.</i>	<‡i.≉)â€dio	n2e.
115	Synthesis of novel 5 <i>H</i> , 11 <i>H</i> â€pyrido[2′,3′:2,3]thiopyrano[4,3â€ <i>b</i>]â€indoles by fischerâ cyclization. Journal of Heterocyclic Chemistry, 2000, 37, 379-382.	€indole 1.4	21
116	3-Aryl-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-ones:Â Tricyclic Heteroaromatic Derivatives as a New Class of Benzodiazepine Receptor Ligands. Journal of Medicinal Chemistry, 2000, 43, 96-102.	2.9	24
117	Indole amide derivatives: synthesis, structure–activity relationships and molecular modelling studies of a new series of histamine H1-receptor antagonists. European Journal of Medicinal Chemistry, 1999, 34, 93-105.	2.6	47
118	Synthesis of purinobenzodiazepine and purinobenzotriazocine derivatives, two new heterocyclic ring systems. Journal of Heterocyclic Chemistry, 1999, 36, 639-642.	1.4	8
119	Synthesis of pyrrolo[3,4-c]pyridine derivatives possessing an acid group and their in vitro and in vivo evaluation as aldose reductase inhibitors. European Journal of Medicinal Chemistry, 1996, 31, 49-58.	2.6	57
120	Synthesis of novel 1â€aryl[1]benzoxepino[5,4â€ <i>c</i>]pyrazole and [1]benzoxepino[5,4â€ <i>d</i>]pyrimidine derivatives. Journal of Heterocyclic Chemistry, 1993, 30, 1653-1658.	1.4	2