Robert A Sharrock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2487681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Molecular Biology, 1992, 18, 675-689.	2.0	952
2	The phytochrome apoprotein family inArabidopsis is encoded by five genes: the sequences and expression ofPHYD andPHYE. Plant Molecular Biology, 1994, 25, 413-427.	2.0	593
3	Patterns of Expression and Normalized Levels of the Five Arabidopsis Phytochromes. Plant Physiology, 2002, 130, 442-456.	2.3	270
4	Phytochrome D Acts in the Shade-Avoidance Syndrome in Arabidopsis by Controlling Elongation Growth and Flowering Time1. Plant Physiology, 1999, 119, 909-916.	2.3	247
5	A new role for phytochromes in temperatureâ€dependent germination. New Phytologist, 2007, 174, 735-741.	3.5	110
6	Heterodimerization of type II phytochromes in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11500-11505.	3.3	109
7	Unanticipated regulatory roles for <i>Arabidopsis</i> phytochromes revealed by null mutant analysis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1542-1547.	3.3	107
8	Coordination of Phytochrome Levels in phyB Mutants of Arabidopsis as Revealed by Apoprotein-Specific Monoclonal Antibodies. Genetics, 1998, 149, 523-535.	1.2	103
9	Evolution of the Phytochrome Gene Family and Its Utility for Phylogenetic Analyses of Angiosperms. Annals of the Missouri Botanical Garden, 1995, 82, 296.	1.3	98
10	The phytochrome red/far-red photoreceptor superfamily. Genome Biology, 2008, 9, 230.	13.9	94
11	The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell, 1991, 3, 1263.	3.1	91
12	Diversification of phytochrome contributions to germination as a function of seedâ€maturation environment. New Phytologist, 2008, 177, 367-379.	3.5	86
13	Obligate Heterodimerization of <i>Arabidopsis</i> Phytochromes C and E and Interaction with the PIF3 Basic Helix-Loop-Helix Transcription Factor. Plant Cell, 2009, 21, 786-799.	3.1	85
14	Arabidopsisphytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Letters, 2000, 470, 107-112.	1.3	78
15	Distinct Light and Clock Modulation of Cytosolic Free Ca2+ Oscillations and Rhythmic <i>CHLOROPHYLL A/B BINDING PROTEIN2</i> Promoter Activity in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 3474-3490.	3.1	77
16	The ACA10 Ca2+-ATPase Regulates Adult Vegetative Development and Inflorescence Architecture in Arabidopsis. Plant Physiology, 2008, 146, 323-324.	2.3	66
17	Monophyletic subgroups of the tribe Millettieae (Leguminosae) as revealed by phytochrome nucleotide sequence data. American Journal of Botany, 1998, 85, 412-433.	0.8	58
18	Transgenic complementation of the hy3 phytochrome B mutation and response to PHYB gene copy number in Arabidopsis. Plant Journal, 1994, 5, 261-272.	2.8	51

#	Article	IF	CITATIONS
19	THE Arabidopsis PHYTOCHROME A GENE HAS MULTIPLE TRANSCRIPTION START SITES AND A PROMOTER SEQUENCE MOTIF HOMOLOGOUS TO THE REPRESSOR ELEMENT OF MONOCOT PHYTOCHROME A GENES. Photochemistry and Photobiology, 1994, 59, 379-384.	1.3	36
20	New Roles of Phytochromes during Seed Germination. International Journal of Plant Sciences, 2008, 169, 531-540.	0.6	34
21	Differential activities of the Arabidopsis phyB/D/E phytochromes in complementing phyB mutant phenotypes. Plant Molecular Biology, 2003, 52, 135-142.	2.0	29
22	Comparative functional analysis of fullâ€length and Nâ€ŧerminal fragments of phytochrome C, D and E in red lightâ€induced signaling. New Phytologist, 2013, 200, 86-96.	3.5	25
23	Signaling activities among the Arabidopsis phyB/D/E-type phytochromes: a major role for the central region of the apoprotein. Plant Journal, 2003, 34, 317-326.	2.8	17
24	The Arabidopsis compact inflorescence genes: phase-specific growth regulation and the determination of inflorescence architecture. Plant Journal, 2001, 26, 549-559.	2.8	14
25	Directed dimerization: an <i>in vivo</i> expression system for functional studies of type <scp>II</scp> phytochromes. Plant Journal, 2013, 75, 915-926.	2.8	9
26	PHYTOCHROME GENES IN HIGHER PLANTS: STRUCTURE, EXPRESSION, AND EVOLUTION., 2006, , 99-129.		8
27	Rapid sequence and functional diversification of a miRNA superfamily targeting calcium signaling components in seed plants. New Phytologist, 2022, 235, 1082-1095.	3.5	5
28	Biological activity and dimerization state of modified phytochrome A proteins. PLoS ONE, 2017, 12, e0186468.	1.1	2
29	Identification and molecular characterization of novel Rhtâ€l alleles in hard red spring wheat. Crop Science, 2021, 61, 1030-1037.	0.8	2
30	Interactions of the Arabidopsis Type II Phytochromes. , 2005, , 51-56.		0
31	Rectification and Party Misdescription: To what extent is Rectification Competent or Useful?. Potchefstroom Electronic Law Journal, 2014, 17, 2194-2207.	0.1	Ο