Youmie Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2487637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile Green Synthesis of Titanium Dioxide Nanoparticles by Upcycling Mangosteen (Garcinia) Tj ETQq1 1 0.78431	.4 rgBT /0	Overlock 10
2	Folic Acid and Chitosan-Functionalized Gold Nanorods and Triangular Silver Nanoplates for the Delivery of Anticancer Agents. International Journal of Nanomedicine, 2022, Volume 17, 1881-1902.	6.7	3
3	Potential applications of PEGylated green gold nanoparticles in cyclophosphamide-induced cystitis. Artificial Cells, Nanomedicine and Biotechnology, 2022, 50, 130-146.	2.8	3
4	Green Synthetic Nanoarchitectonics of Gold and Silver Nanoparticles Prepared Using Quercetin and Their Cytotoxicity and Catalytic Applications. Journal of Nanoscience and Nanotechnology, 2020, 20, 2781-2790.	0.9	38
5	Graphene oxide grafted gold nanoparticles and silver/silver chloride nanoparticles green-synthesized by a Portulaca oleracea extract: Assessment of catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125527.	4.7	9
6	Diallyl disulphide-loaded spherical gold nanoparticles and acorn-like silver nanoparticles synthesised using onion extract: catalytic activity and cytotoxicity. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 948-960.	2.8	8
7	Anticancer prospects of silver nanoparticles green-synthesized by plant extracts. Materials Science and Engineering C, 2020, 116, 111253.	7.3	37
8	Atomistic simulation of agglomeration of metal nanoparticles considering the induced charge density of surface atoms. International Journal of Mechanics and Materials in Design, 2020, 16, 475-486.	3.0	3
9	Highly Selective Synthesis of Hydrazoarenes from Nitroarenes via Polystyrene-Supported Au-Nanoparticle-Catalyzed Reduction: Application to Azoarenes, Aminoarenes, and 4,4′-Diaminobiaryls. ACS Omega, 2020, 5, 7576-7583.	3.5	8
10	Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract. Nanoscale Research Letters, 2019, 14, 129.	5.7	102
11	Synthesis of gold nanoparticles supported at graphene derivatives using green reductants and evaluation of their catalytic activity in 4-nitrophenol reduction. Gold Bulletin, 2019, 52, 165-174.	2.4	2
12	Sesquiterpenoids from Tussilago farfara Flower Bud Extract for the Eco-Friendly Synthesis of Silver and Gold Nanoparticles Possessing Antibacterial and Anticancer Activities. Nanomaterials, 2019, 9, 819.	4.1	41
13	Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Materials Science and Engineering C, 2019, 101, 204-216.	7.3	124
14	Fabrication of nanoribbons by dielectrophoresis assisted cold welding of gold nanoparticles on mica substrate. Scientific Reports, 2019, 9, 3629.	3.3	14
15	Green synthesis and biological activities of silver nanoparticles prepared by Carpesium cernuum extract. Archives of Pharmacal Research, 2019, 42, 926-934.	6.3	22
16	An aqueous extract of Nomura's jellyfish ameliorates inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells and a zebrafish model of inflammation. Biomedicine and Pharmacotherapy, 2018, 100, 583-589.	5.6	9
17	Optimal mass distribution in carbon nanotubes for extreme thermal conductivity: Analytical manipulation of isotope effects. Computational Materials Science, 2018, 150, 273-282.	3.0	1
18	Antioxidant Potential of Artemisia capillaris, Portulaca oleracea, and Prunella vulgaris Extracts for Biofabrication of Gold Nanoparticles and Cytotoxicity Assessment. Nanoscale Research Letters, 2018, 13, 348.	5.7	18

Youmie Park

#	Article	IF	CITATIONS
19	Highly stable gold nanoparticles green-synthesized by upcycling cartilage waste extract from yellow-nose skate (<i>Dipturus chilensis</i>) and evaluation of its cytotoxicity, haemocompatibility and antioxidant activity. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1108-1119.	2.8	13
20	Upcycling of jellyfish (<i>Nemopilema nomurai</i>) sea wastes as highly valuable reducing agents for green synthesis of gold nanoparticles and their antitumor and anti-inflammatory activity. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1127-1136.	2.8	26
21	Platycodon saponins from Platycodi Radix (Platycodon grandiflorum) for the Green Synthesis of Gold and Silver Nanoparticles. Nanoscale Research Letters, 2018, 13, 23.	5.7	35
22	Green Synthesis, Characterization and Catalytic Activity of Gold Nanoparticles Prepared Using Rosmarinic Acid. Journal of Nanoscience and Nanotechnology, 2018, 18, 659-667.	0.9	16
23	Green Synthesis and Catalytic Activity of Gold Nanoparticles/Graphene Oxide Nanocomposites Prepared By Tannic Acid. Journal of Nanoscience and Nanotechnology, 2018, 18, 2536-2546.	0.9	5
24	Anisotropic Snowman-Like Silver Nanoparticles Synthesized by <i>Caesalpinia sappan</i> Extract and <i>In Vitro</i> Antibacterial Activity. Journal of Nanoscience and Nanotechnology, 2018, 18, 3880-3887.	0.9	7
25	Catalytic reduction of 4-nitrophenol with gold nanoparticles synthesized by caffeic acid. Nanoscale Research Letters, 2017, 12, 7.	5.7	106
26	Facile Fabrication of Gold Nanoparticles with Ethambutol. Journal of Nanoscience and Nanotechnology, 2017, 17, 4851-4857.	0.9	1
27	Asymmetric dumbbell-shaped silver nanoparticles and spherical gold nanoparticles green-synthesized by mangosteen (Carcinia mangostana) pericarp waste extracts. International Journal of Nanomedicine, 2017, Volume 12, 6895-6908.	6.7	42
28	Vancomycin-Functionalized Gold and Silver Nanoparticles as an Antibacterial Nanoplatform Against Methicillin-Resistant <i>Staphylococcus aureus</i> . Journal of Nanoscience and Nanotechnology, 2016, 16, 6393-6399.	0.9	23
29	Gallotannin-Capped Gold Nanoparticles: Green Synthesis and Enhanced Morphology of AFM Images. Journal of Nanoscience and Nanotechnology, 2016, 16, 5991-5998.	0.9	5
30	Concentration Effect of Reducing Agents on Green Synthesis of Gold Nanoparticles: Size, Morphology, and Growth Mechanism. Nanoscale Research Letters, 2016, 11, 230.	5.7	76
31	Green Synthesis and Catalytic Activity of Gold Nanoparticles Synthesized by Artemisia capillaris Water Extract. Nanoscale Research Letters, 2016, 11, 474.	5.7	64
32	Cold welding of gold nanoparticles on mica substrate: Self-adjustment and enhanced diffusion. Scientific Reports, 2016, 6, 32951.	3.3	20
33	Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	64
34	Tannic acid-mediated green synthesis of antibacterial silver nanoparticles. Archives of Pharmacal Research, 2016, 39, 465-473.	6.3	66
35	Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Materials Science and Engineering C, 2016, 58, 1160-1169.	7.3	80
36	Plant Extract (<i>Bupleurum falcatum</i>) as a Green Factory for Biofabrication of Gold Nanoparticles. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	6

YOUMIE PARK

#	Article	IF	CITATIONS
37	Caffeic Acid: Potential Applications in Nanotechnology as a Green Reducing Agent for Sustainable Synthesis of Gold Nanoparticles. Natural Product Communications, 2015, 10, 1934578X1501000.	0.5	3
38	Green synthesis of gold nanoparticles using chlorogenic acid and their enhanced performance for inflammation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1677-1688.	3.3	76
39	Antibacterial properties of cetyltrimethylammonium bromide-stabilized green silver nanoparticles against methicillin-resistant Staphylococcus aureus. Archives of Pharmacal Research, 2015, 38, 1906-1912.	6.3	28
40	Silver Nanoparticles Synthesized Using <l>Caesalpinia sappan</l> Extract as Potential Novel Nanoantibiotics Against Methicillin-Resistant <l>Staphylococcus aureus</l> . Journal of Nanoscience and Nanotechnology, 2015, 15, 5543-5552.	0.9	24
41	Crystalline Silver Nanoparticles by Using <i>Polygala tenuifolia</i> Root Extract as a Green Reducing Agent. Journal of Nanoscience and Nanotechnology, 2015, 15, 1567-1574.	0.9	10
42	Caffeic acid: potential applications in nanotechnology as a green reducing agent for sustainable synthesis of gold nanoparticles. Natural Product Communications, 2015, 10, 627-30.	0.5	4
43	Plant Extract (Bupleurum falcatum) as a Green Factory for Biofabrication of Gold Nanoparticles. Natural Product Communications, 2015, 10, 1593-6.	0.5	9
44	Root Extracts of <i>Polygala tenuifolia</i> for the Green Synthesis of Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2014, 14, 6202-6208.	0.9	15
45	One-step functionalization of gold and silver nanoparticles by ampicillin. Materials Letters, 2014, 129, 185-190.	2.6	20
46	Synthesis of gold nanoparticles with glycosides: synthetic trends based on the structures of glycones and aglycones. Carbohydrate Research, 2014, 386, 57-61.	2.3	25
47	Chondroitin sulfate-capped gold nanoparticles for the oral delivery of insulin. International Journal of Biological Macromolecules, 2014, 63, 15-20.	7.5	76
48	Adjoint design sensitivity analysis of molecular dynamics in parallel computing environment. International Journal of Mechanics and Materials in Design, 2014, 10, 379-394.	3.0	7
49	Catechin-capped gold nanoparticles: green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction. Nanoscale Research Letters, 2014, 9, 103.	5.7	45
50	A New Paradigm Shift for the Green Synthesis of Antibacterial Silver Nanoparticles Utilizing Plant Extracts. Toxicological Research, 2014, 30, 169-178.	2.1	103
51	Earthworm extracts utilized in the green synthesis of gold nanoparticles capable of reinforcing the anticoagulant activities of heparin. Nanoscale Research Letters, 2013, 8, 542.	5.7	24
52	Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles. Nanotechnology, 2013, 24, 395102.	2.6	48
53	A surface evolution scheme to identify nanoscale intrinsic geometry from AFM experimental data. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	1
54	Biogenic Silver Nanoparticles with Chlorogenic Acid as a Bioreducing Agent. Journal of Nanoscience and Nanotechnology, 2013, 13, 5787-5793.	0.9	32

YOUMIE PARK

#	Article	IF	CITATIONS
55	Green Synthesis and Nanotopography of Heparin-Reduced Gold Nanoparticles with Enhanced Anticoagulant Activity. Journal of Nanoscience and Nanotechnology, 2013, 13, 2068-2076.	0.9	26
56	Invertebrate water extracts as biocompatible reducing agents for the green synthesis of gold and silver nanoparticles. Natural Product Communications, 2013, 8, 1149-52.	0.5	9
57	Antibacterial Activity and Increased Freeze-Drying Stability of Sialyllactose-Reduced Silver Nanoparticles Using Sucrose and Trehalose. Journal of Nanoscience and Nanotechnology, 2012, 12, 3884-3895.	0.9	16
58	<i>Artemisia capillaris</i> Extracts as a Green Factory for the Synthesis of Silver Nanoparticles with Antibacterial Activities. Journal of Nanoscience and Nanotechnology, 2012, 12, 7087-7095.	0.9	37
59	Enhanced Antibacterial Activities of Leonuri Herba Extracts Containing Silver Nanoparticles. Phytotherapy Research, 2012, 26, 1249-1255.	5.8	49
60	Comparative study of antioxidant effects of five Korean varieties red pepper (Capsicum annuum L) extracts from various parts including placenta, stalk, and pericarp. Food Science and Biotechnology, 2012, 21, 715-721.	2.6	21
61	Preparative separation of minor saponins from <i>Platycodi Radix</i> by highâ€speed counterâ€current chromatography. Journal of Separation Science, 2011, 34, 2559-2565.	2.5	30
62	Detection of Malathion, Fenthion and Methidathion by Using Heparin-Reduced Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 7570-7578.	0.9	21
63	Mining invertebrate natural products for future therapeutic treasure. Natural Product Communications, 2011, 6, 1403-8.	0.5	10
64	Glycosaminoglycans from earthworms (Eisenia andrei). Glycoconjugate Journal, 2010, 27, 249-257.	2.7	15
65	A furanquinone from <i>Paulownia tomentosa</i> stem for a new cathepsin K inhibitor. Phytotherapy Research, 2009, 23, 1485-1488.	5.8	9
66	Determination of Rebamipide in Human Plasma by HPLC. Journal of Liquid Chromatography and Related Technologies, 2004, 27, 1925-1935.	1.0	8
67	Stability of 13Câ€Urea/PEG Capsules by LCâ€APCIâ€MS. Journal of Liquid Chromatography and Related Technologies, 2003, 26, 1275-1286.	1.0	1
68	Synthesis of Sulfhydryl Cross-Linking Poly(Ethylene Glycol)-Peptides and Glycopeptides as Carriers for Gene Deliveryâ€. Bioconjugate Chemistry, 2002, 13, 232-239.	3.6	67