Rong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2487503/publications.pdf

Version: 2024-02-01

		430874	361022
35	1,236	18	35
papers	citations	h-index	g-index
35	35	35	1244
33	33	33	1244
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate. Polymer Degradation and Stability, 2015, 122, 102-109.	5.8	151
2	A Multifunctional Dyeâ€doped Liquid Crystal Polymer Actuator: Lightâ€Guided Transportation, Turning in Locomotion, and Autonomous Motion. Angewandte Chemie - International Edition, 2018, 57, 11758-11763.	13.8	124
3	Nonâ€Uniform Optical Inscription of Actuation Domains in a Liquid Crystal Polymer of Uniaxial Orientation: An Approach to Complex and Programmable Shape Changes. Angewandte Chemie - International Edition, 2017, 56, 14202-14206.	13.8	112
4	Synthesis and characterization of flame retardant rigid polyurethane foam based on a reactive flame retardant containing phosphazene and cyclophosphonate. Polymer Degradation and Stability, 2017, 144, 62-69.	5.8	89
5	Chain Folding in Main-Chain Liquid Crystalline Polyester with Strong π–π Interaction: An Efficient β-Nucleating Agent for Isotactic Polypropylene. Macromolecules, 2017, 50, 1610-1617.	4.8	72
6	Preparation, Thermal Degradation, and Fire Behaviors of Intumescent Flame Retardant Polypropylene with a Charring Agent Containing Pentaerythritol and Triazine. Industrial & mp; Engineering Chemistry Research, 2016, 55, 5298-5305.	3.7	68
7	Phosphorus-containing thermotropic liquid crystalline polymers: a class of efficient polymeric flame retardants. Polymer Chemistry, 2014, 5, 3737.	3.9	56
8	Chain folding in main-chain liquid crystalline polyesters: from π–π stacking toward shape memory. Journal of Materials Chemistry C, 2014, 2, 6155.	5.5	52
9	Preparation, characterization and thermal degradation behavior of rigid polyurethane foam using a malic acid based polyols. Industrial Crops and Products, 2019, 136, 121-128.	5.2	50
10	Multitemperature Memory Actuation of a Liquid Crystal Polymer Network over a Broad Nematic–Isotropic Phase Transition Induced by Large Strain. ACS Macro Letters, 2018, 7, 353-357.	4.8	49
11	Azobenzene-containing liquid crystalline polyester with π–π interactions: diverse thermo- and photo-responsive behaviours. Journal of Materials Chemistry C, 2017, 5, 3306-3314.	5.5	46
12	Effect of different dimensional carbon nanoparticles on the shape memory behavior of thermotropic liquid crystalline polymer. Composites Science and Technology, 2017, 138, 8-14.	7.8	43
13	In situ reinforced and flame-retarded polycarbonate by a novel phosphorus-containing thermotropic liquid crystalline copolyester. Polymer, 2011, 52, 4150-4157.	3.8	35
14	A Multifunctional Dyeâ€doped Liquid Crystal Polymer Actuator: Lightâ€Guided Transportation, Turning in Locomotion, and Autonomous Motion. Angewandte Chemie, 2018, 130, 11932-11937.	2.0	35
15	Toughening Epoxy Resin Using a Liquid Crystalline Elastomer for Versatile Application. ACS Applied Polymer Materials, 2019, 1, 2291-2301.	4.4	32
16	Nonâ€Uniform Optical Inscription of Actuation Domains in a Liquid Crystal Polymer of Uniaxial Orientation: An Approach to Complex and Programmable Shape Changes. Angewandte Chemie, 2017, 129, 14390-14394.	2.0	26
17	Nonisothermal Crystallization, Melting Behaviors, and Mechanical Properties of Isotactic Polypropylene Nucleated with a Liquid Crystalline Polymer. Industrial & Dipineering Chemistry Research, 2018, 57, 2083-2093.	3.7	20
18	Novel liquid crystalline copolyester containing amphi-mesogenic units toward multiple stimuli-response behaviors. Journal of Materials Chemistry C, 2017, 5, 9702-9711.	5.5	19

#	Article	IF	Citations
19	Highly Toughened and Heat-Resistant Poly(lactic acid) with Balanced Strength Using an Unsaturated Liquid Crystalline Polyester via Dynamic Vulcanization. ACS Applied Polymer Materials, 2021, 3, 299-309.	4.4	18
20	PET in situ composites improved both flame retardancy and mechanical properties by phosphorus-containing thermotropic liquid crystalline copolyester with aromatic ether moiety. Composites Science and Technology, 2012, 72, 649-655.	7.8	17
21	Synthesis and characterization of rigid polyurethane foam with dimer fatty acid-based polyols. Polymer Bulletin, 2019, 76, 3753-3768.	3.3	16
22	Super-tough and flame-retardant poly(lactic acid) materials using a phosphorus-containing malic acid-based copolyester by reactive blending. Polymer Degradation and Stability, 2022, 198, 109889.	5.8	13
23	Molecular-Weight Dependence of Nucleation Effect of a Liquid Crystalline Polyester β-Nucleating Agent for Isotactic Polypropylene. Industrial & Engineering Chemistry Research, 2018, 57, 6734-6740.	3.7	12
24	Physio- and chemo-dual crosslinking toward thermoand photo-response of azobenzene-containing liquid crystalline polyester. Science China Materials, 2018, 61, 1225-1236.	6.3	12
25	Fire retardance and smoke suppression of polypropylene with a macromolecular intumescent flame retardant containing caged bicyclic phosphate and piperazine. Journal of Applied Polymer Science, 2019, 136, 47593.	2.6	12
26	Preparation of a catalyst-free and water-blown rigid polyurethane foam from malic-co-citric acid-based polyols. Industrial Crops and Products, 2021, 169, 113648.	5.2	12
27	Main-chain liquid crystalline copolyesters with a phosphorus-containing non-coplanar moiety. Polymer Chemistry, 2013, 4, 329-336.	3.9	10
28	Main-chain liquid crystalline ionomers with a nonplanar ionic segment. RSC Advances, 2015, 5, 48541-48550.	3.6	8
29	Superâ€ŧough poly(lactic acid) using a fully bioâ€based polyester containing malic acid via inâ€situ interfacial compatibilization. Journal of Applied Polymer Science, 2021, 138, 51413.	2.6	6
30	Hierarchical N-doped holey three-dimensional reduced graphene oxide with high performance capacitive deionization. Journal of Materials Research and Technology, 2021, 15, 1996-2006.	5.8	6
31	Continuously Reinforced Carbon Nanotube Film Sea-Cucumber-like Polyaniline Nanocomposites for Flexible Self-Supporting Energy-Storage Electrode Materials. Nanomaterials, 2022, 12, 8.	4.1	5
32	Preparation of liquid crystalline polymer networks containing a cinnamyl group in the main chain with tunable thermal actuation behavior. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 904-911.	2.1	3
33	An efficient liquid crystalline ionomer <scp>βâ€nucleating</scp> agent featuring Ï€â€Ï€ stacking and ionic interactions for isotactic polypropylene. Polymer Crystallization, 2020, 3, e10125.	0.8	3
34	Molecular-weight dependence of phase structure and viscosity in a liquid crystalline polyester with strong π–π interaction. Liquid Crystals, 2019, 46, 422-429.	2.2	2
35	SYNTHESIS AND CHARACTERIZATION OF PHOSPHORUS-CONTAINING LIQUID CRYSTALLINE COPOLYESTERS BASED ON BIPHENYL-4,4′-DICARBOXYLIC ACID. Acta Polymerica Sinica, 2012, 012, 1177-1182.	0.0	2