## Anjana Badrinarayanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/248745/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bacterial Chromosome Organization and Segregation. Annual Review of Cell and Developmental<br>Biology, 2015, 31, 171-199.                                                                        | 9.4  | 264       |
| 2  | In Vivo Architecture and Action of Bacterial Structural Maintenance of Chromosome Proteins.<br>Science, 2012, 338, 528-531.                                                                      | 12.6 | 253       |
| 3  | MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation.<br>Nature Communications, 2016, 7, 10466.                                                        | 12.8 | 114       |
| 4  | The SMC Complex MukBEF Recruits Topoisomerase IV to the Origin of Replication Region in Live Escherichia coli. MBio, 2014, 5, e01001-13.                                                         | 4.1  | 66        |
| 5  | Rapid pairing and resegregation of distant homologous loci enables double-strand break repair in bacteria. Journal of Cell Biology, 2015, 210, 385-400.                                          | 5.2  | 52        |
| 6  | The Escherichia coli SMC Complex, MukBEF, Shapes Nucleoid Organization Independently of DNA<br>Replication. Journal of Bacteriology, 2012, 194, 4669-4676.                                       | 2.2  | 50        |
| 7  | A CTP-dependent gating mechanism enables ParB spreading on DNA. ELife, 2021, 10, .                                                                                                               | 6.0  | 28        |
| 8  | Evolutionary and Comparative Analysis of Bacterial Nonhomologous End Joining Repair. Genome<br>Biology and Evolution, 2020, 12, 2450-2466.                                                       | 2.5  | 19        |
| 9  | Visualizing mutagenic repair: novel insights into bacterial translesion synthesis. FEMS Microbiology<br>Reviews, 2020, 44, 572-582.                                                              | 8.6  | 16        |
| 10 | Global analysis of double-strand break processing reveals in vivo properties of the helicase-nuclease complex AddAB. PLoS Genetics, 2017, 13, e1006783.                                          | 3.5  | 16        |
| 11 | Asymmetric chromosome segregation and cell division in DNA damage-induced bacterial filaments.<br>Molecular Biology of the Cell, 2020, 31, 2920-2931.                                            | 2.1  | 15        |
| 12 | Coordination between nucleotide excision repair and specialized polymerase DnaE2 action enables DNA damage survival in non-replicating bacteria. ELife, 2021, 10, .                              | 6.0  | 11        |
| 13 | Using Fluorescence Recovery After Photobleaching (FRAP) to Study Dynamics of the Structural<br>Maintenance of Chromosome (SMC) Complex In Vivo. Methods in Molecular Biology, 2016, 1431, 37-46. | 0.9  | 6         |
| 14 | Live-Cell Fluorescence Imaging of RecN in Caulobacter crescentus Under DNA Damage. Methods in<br>Molecular Biology, 2019, 2004, 239-250.                                                         | 0.9  | 5         |
| 15 | Time to death in the presence of E. coli: a mass-scale method for assaying pathogen resistance in Drosophila. Journal of Genetics, 2007, 86, 75-79.                                              | 0.7  | 3         |
| 16 | Tracking Bacterial Chromosome Dynamics with Microfluidics-Based Live Cell Imaging. Methods in Molecular Biology, 2019, 2004, 223-238.                                                            | 0.9  | 2         |
| 17 | Rapid pairing and resegregation of distant homologous loci enables double-strand break repair in bacteria. Journal of Experimental Medicine, 2015, 212, 21290IA70.                               | 8.5  | 0         |