Youn-Joo An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2487287/publications.pdf

Version: 2024-02-01

202 papers 9,542 citations

66234 42 h-index 91 g-index

202 all docs 202 docs citations

202 times ranked 10012 citing authors

#	Article	IF	CITATIONS
1	Species sensitivity distributions for ethylparaben to derive protective concentrations for soil ecosystems. Environmental Geochemistry and Health, 2022, 44, 2435-2449.	1.8	4
2	Critical review of environmental impacts of microfibers in different environmental matrices. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 251, 109196.	1.3	20
3	Are your shoes safe for the environment? – Toxicity screening of leachates from microplastic fragments of shoe soles using freshwater organisms. Journal of Hazardous Materials, 2022, 421, 126779.	6.5	19
4	Towards understanding the impact of plastics on freshwater and marine microalgae: A review of the mechanisms and toxicity endpoints. Journal of Hazardous Materials, 2022, 423, 127174.	6.5	25
5	Sub-acute exposure to nanoplastics via two-chain trophic transfer: From brine shrimp Artemia franciscana to small yellow croaker Larimichthys polyactis. Marine Pollution Bulletin, 2022, 175, 113314.	2.3	17
6	Microplastics from shoe sole fragments cause oxidative stress in a plant (Vigna radiata) and impair soil environment. Journal of Hazardous Materials, 2022, 429, 128306.	6.5	48
7	Applicability Evaluation of Soil Algae Pipe Assay in Silver Nanoparticle-Contaminated Soils. Applied Sciences (Switzerland), 2022, 12, 1890.	1.3	2
8	Sustainable Green Process for Environmentally Viable Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1154-1177.	8.8	43
9	Site-specific ecological risk assessment of metal-contaminated soils based on the TRIAD approach. Journal of Hazardous Materials, 2022, 434, 128883.	6.5	3
10	Length- and polymer-dependent ecotoxicities of microfibers to the earthworm Eisenia andrei. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 257, 109354.	1.3	6
11	Soil algae as a potential carrier for nanoplastics: Adsorption and internalization of nanoplastics in algal cells. Science of the Total Environment, 2022, 837, 155678.	3.9	11
12	Earthworm half-pipe assay: A new alternative in vivo skin corrosion test using invertebrates. Environmental Pollution, 2022, 307, 119519.	3.7	2
13	Validation of the paper-disc soil method using soil alga Chlorococcum infusionum to quantitatively determine the toxicity of heavy metals. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 258, 109380.	1.3	O
14	Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil. Journal of Hazardous Materials, 2022, 436, 129194.	6.5	44
15	Toxicity assessment of tire particles released from personal mobilities (bicycles, cars, and electric) Tj ETQq1	l 0.784314 rg 6.5	:BT / Overlock
16	Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. Journal of Hazardous Materials, 2021, 402, 124034.	6.5	189
17	Multigenerational effects of polyethylene terephthalate microfibers in Caenorhabditis elegans. Environmental Research, 2021, 193, 110569.	3.7	37
18	Leaching potential of chemical species from real perovskite and silicon solar cells. Chemical Engineering Research and Design, 2021, 149, 115-122.	2.7	20

#	Article	lF	CITATIONS
19	Synthetic and natural microfibers induce gut damage in the brine shrimp Artemia franciscana. Aquatic Toxicology, 2021, 232, 105748.	1.9	39
20	Rapid In Situ Biomonitoring of Subsoil Contamination by Applying an Algae-Soaked Disc Seeding Assay. Applied Sciences (Switzerland), 2021, 11, 2463.	1.3	3
21	Selecting Bioassay Test Species at the Screening Level of Soil Ecological Risk Assessments. Applied Sciences (Switzerland), 2021, 11, 4314.	1.3	3
22	Sublethal toxicity of PbI2 in perovskite solar cells to fish embryos (Danio rerio and Oryzias latipes): Deformity and growth inhibition. Science of the Total Environment, 2021, 771, 145388.	3.9	17
23	Assessing potential indicator of endocrine-disrupting property of chemicals using soil invertebrates. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 245, 109036.	1.3	5
24	Comparative toxicity of potential leachates from perovskite and silicon solar cells in aquatic ecosystems. Aquatic Toxicology, 2021, 237, 105900.	1.9	10
25	Derivation of acute copper biotic ligand model-based predicted no-effect concentrations and acute-chronic ratio. Science of the Total Environment, 2021, 780, 146425.	3.9	4
26	Microplastics disrupt accurate soil organic carbon measurement based on chemical oxidation method. Chemosphere, 2021, 276, 130178.	4.2	46
27	Post COVID-19 pandemic: Biofragmentation and soil ecotoxicological effects of microplastics derived from face masks. Journal of Hazardous Materials, 2021, 416, 126169.	6.5	112
28	Combined exposure to microplastics and zinc produces sex-specific responses in the water flea Daphnia magna. Journal of Hazardous Materials, 2021, 420, 126652.	6.5	36
29	Estimation of hazardous concentration of toluene in the terrestrial ecosystem through the species sensitivity distribution approach. Environmental Pollution, 2021, 289, 117836.	3.7	5
30	Perspectives on microalgae as model organisms toward the standardization of soil algal toxicity test methods. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 249, 109144.	1.3	0
31	Effects of synthetic and natural microfibers on Daphnia magna–Are they dependent on microfiber type?. Aquatic Toxicology, 2021, 240, 105968.	1.9	34
32	Application of a soil quality assessment system using ecotoxicological indicators to evaluate contaminated and remediated soils. Environmental Geochemistry and Health, 2020, 42, 1681-1690.	1.8	10
33	Effects of food presence on microplastic ingestion and egestion in Mytilus galloprovincialis. Chemosphere, 2020, 240, 124855.	4.2	62
34	Ecological risk assessment for perfluorooctanoic acid in soil using a species sensitivity approach. Journal of Hazardous Materials, 2020, 382, 121150.	6.5	26
35	Effects on photosynthesis and polyphenolic compounds in crop plant mung bean (Vigna radiata) following simulated accidental exposure to hydrogen peroxide. Journal of Hazardous Materials, 2020, 383, 121088.	6.5	11
36	Development of water quality criteria for arsenic to protect aquatic life based on species sensitivity distribution. Ecotoxicology and Environmental Safety, 2020, 189, 109933.	2.9	9

#	Article	IF	Citations
37	Photosynthesis enhancement in four marine microalgal species exposed to expanded polystyrene leachate. Ecotoxicology and Environmental Safety, 2020, 189, 109936.	2.9	30
38	Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties. Environmental Pollution, 2020, 258, 113740.	3.7	98
39	Salvinia natans: A potential test species for ecotoxicity testing. Environmental Pollution, 2020, 267, 115650.	3.7	8
40	Edible size of polyethylene microplastics and their effects on springtail behavior. Environmental Pollution, 2020, 266, 115255.	3.7	44
41	Determination of hazardous concentrations of 2,4-dinitrophenol in freshwater ecosystems based on species sensitivity distributions. Aquatic Toxicology, 2020, 228, 105646.	1.9	9
42	Iced block method: An efficient method for preparation of micro-sized expanded polystyrene foams. Environmental Pollution, 2020, 263, 114387.	3.7	1
43	Toward Sustainable Environmental Quality: Priority Research Questions for Asia. Environmental Toxicology and Chemistry, 2020, 39, 1485-1505.	2.2	38
44	Deriving hazardous concentrations of phenol in soil ecosystems using a species sensitivity distribution approach. Journal of Hazardous Materials, 2020, 399, 123036.	6.5	22
45	Multispecies bioassay of propylparaben to derive protective concentrations for soil ecosystems using a species sensitivity distribution approach. Environmental Pollution, 2020, 265, 114891.	3.7	5
46	Nanoplastic ingestion induces behavioral disorders in terrestrial snails: trophic transfer effects <i>via</i> vascular plants. Environmental Science: Nano, 2020, 7, 975-983.	2.2	112
47	Potential environmental risk of solar cells: Current knowledge and future challenges. Journal of Hazardous Materials, 2020, 392, 122297.	6.5	82
48	Quantitative assessment of photosynthetic activity of Chlorella (Class Trebouxiophyceae) adsorbed onto soil by using fluorescence imaging. Environmental Pollution, 2019, 254, 112942.	3.7	2
49	Impact of nano-sized plastic on the nutritional value and gut microbiota of whiteleg shrimp Litopenaeus vannamei via dietary exposure. Environment International, 2019, 130, 104848.	4.8	76
50	Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: Focusing on the algal cell to plastic particle size ratio. Aquatic Toxicology, 2019, 216, 105296.	1.9	119
51	Comparative study of feminine hygiene product regulations in Korea, the European Union, and the United States. Regulatory Toxicology and Pharmacology, 2019, 107, 104397.	1.3	4
52	Physiological response of crop plants to the endocrine-disrupting chemical nonylphenol in the soil environment. Environmental Pollution, 2019, 251, 573-580.	3.7	21
53	Changes in soil properties after remediation influence the performance and survival of soil algae and earthworm. Ecotoxicology and Environmental Safety, 2019, 174, 189-196.	2.9	20
54	A simple and efficient method for separation of low-density polyethylene films into different micro-sized groups for laboratory investigation. Science of the Total Environment, 2019, 668, 84-89.	3.9	5

#	Article	IF	CITATIONS
55	Soil algae pipe assay: ex situ method for the evaluation of soil quality based on soil algae and its application to the pot test. Chemosphere, 2019, 224, 634-636.	4.2	8
56	Soil microplastics inhibit the movement of springtail species. Environment International, 2019, 126, 699-706.	4.8	169
57	Zebrafish can recognize microplastics as inedible materials: Quantitative evidence of ingestion behavior. Science of the Total Environment, 2019, 649, 156-162.	3.9	68
58	Crop-dependent changes in water absorption of expanded polystyrene in soil environments. Chemosphere, 2019, 219, 345-350.	4.2	21
59	Soil ecotoxicity study of DEHP with respect to multiple soil species. Chemosphere, 2019, 216, 387-395.	4.2	35
60	Size- and shape-dependent toxicity of silver nanomaterials in green alga Chlorococcum infusionum. Ecotoxicology and Environmental Safety, 2019, 168, 388-393.	2.9	50
61	The effects of silver nanomaterial shape and size on toxicity to Caenorhabditis elegans in soil media. Chemosphere, 2019, 215, 50-56.	4.2	55
62	Research Trend for On-Site Soil Ecotoxicity Evaluation Methods for Field Soil. Daehan Hwan'gyeong Gonghag Hoeji, 2019, 41, 125-131.	0.4	11
63	Deriving Candidate List of Korean Native Organisms for Ecotoxicity Testing: (2) Soil Test Species. Daehan Hwan'gyeong Gonghag Hoeji, 2019, 41, 177-190.	0.4	1
64	Distribution Status of Domestic Euglena Species and Analysis of Ecotoxicity Studies. Daehan Hwan'gyeong Gonghag Hoeji, 2019, 41, 399-409.	0.4	1
65	Development of water quality criteria of ammonia for protecting aquatic life in freshwater using species sensitivity distribution method. Science of the Total Environment, 2018, 634, 934-940.	3.9	37
66	Development of a nematode offspring counting assay for rapid and simple soil toxicity assessment. Environmental Pollution, 2018, 236, 91-99.	3.7	26
67	Dissolution of zinc oxide nanoparticles in exposure media of algae, daphnia, and fish embryos for nanotoxicological testing. Chemistry and Ecology, 2018, 34, 229-240.	0.6	8
68	Assessing applicability of the paper-disc method used in combination with flow cytometry to evaluate algal toxicity. Environmental Pollution, 2018, 234, 979-987.	3.7	17
69	Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses. Scientific Reports, 2018, 8, 292.	1.6	34
70	Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Scientific Reports, 2018, 8, 284.	1.6	328
71	Effects of fluorine on crops, soil exoenzyme activities, and earthworms in terrestrial ecosystems. Ecotoxicology and Environmental Safety, 2018, 151, 21-27.	2.9	20
72	Water quality standards for the protection of human health and aquatic ecosystems in Korea: current state and future perspective. Environmental Science and Pollution Research, 2018, 25, 3108-3119.	2.7	5

#	Article	IF	Citations
73	Determination of the soil hazardous concentrations of bisphenol A using the species sensitivity approach. Journal of Hazardous Materials, 2018, 344, 390-397.	6.5	42
74	Estimation of daily fish intake values for use with water quality criteria for human health assessments in Korea. Environmental Science and Pollution Research, 2018, 25, 3120-3126.	2.7	0
75	Matricidal hatching can induce multi-generational effects in nematode Caenorhabditis elegans after dietary exposure to nanoparticles. Environmental Science and Pollution Research, 2018, 25, 36394-36402.	2.7	11
76	Effects of bisphenol A in soil on growth, photosynthesis activity, and genistein levels in crop plants (Vigna radiata). Chemosphere, 2018, 209, 875-882.	4.2	50
77	Comparative study of the sensitivity of Daphnia galeata and Daphnia magna to heavy metals. Ecotoxicology and Environmental Safety, 2018, 162, 63-70.	2.9	29
78	Dietary uptake, biodistribution, and depuration of microplastics in the freshwater diving beetle Cybister japonicus: Effects on predacious behavior. Environmental Pollution, 2018, 242, 839-844.	3.7	39
79	Estimation of the soil hazardous concentration of methylparaben using a species sensitivity approach. Environmental Pollution, 2018, 242, 1002-1009.	3.7	20
80	Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution, 2018, 240, 387-395.	3.7	737
81	Ecological hazard assessment of methyl ethyl ketone using the species sensitivity distribution approach in a soil ecosystem. Journal of Hazardous Materials, 2018, 360, 490-497.	6.5	14
82	Investigation of Korean Native Organisms for Development of Ecotoxicity Test: (2) Soil Test Species. Daehan Hwan'gyeong Gonghag Hoeji, 2018, 40, 48-57.	0.4	11
83	A comparative study of management system of unregulated agricultural pesticides in Korea, the European Union, and the United States of America: a review. Journal of Applied Biological Chemistry, 2018, 61, 195-204.	0.2	3
84	In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils. Journal of Agricultural and Food Chemistry, 2017, 65, 1239-1246.	2.4	34
85	Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Marine Pollution Bulletin, 2017, 124, 624-632.	2.3	438
86	Effects of silver nanowire length and exposure route on cytotoxicity to earthworms. Environmental Science and Pollution Research, 2017, 24, 14516-14524.	2.7	13
87	Earthworm dispersal assay for rapidly evaluating soil quality. Environmental Toxicology and Chemistry, 2017, 36, 2766-2772.	2.2	8
88	A novel method for preventing surface film entrapment of water fleas and its application for toxicity testing with heavy metals. Environmental Science and Pollution Research, 2017, 24, 4210-4219.	2.7	8
89	A rapid screening method to assess soil algal toxicity: Non-destructive sampling of algal cells using culture medium extraction. Applied Soil Ecology, 2017, 120, 143-152.	2.1	24
90	Mixture Toxicity of Nickel and Microplastics with Different Functional Groups on <i>Daphnia magna</i> . Environmental Science &	4.6	216

#	Article	IF	CITATIONS
91	Soil ecotoxicity of seven endocrineâ€disrupting chemicals: a review. European Journal of Soil Science, 2017, 68, 621-649.	1.8	13
92	Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata. Scientific Reports, 2017, 7, 12095.	1.6	169
93	Rapid in situ assessment for predicting soil quality using an algae-soaked disc seeding assay. Environmental Monitoring and Assessment, 2017, 189, 637.	1.3	11
94	Species Sensitivity Distributions for Nonylphenol to Estimate Soil Hazardous Concentration. Environmental Science & Environmen	4.6	23
95	Dimension-dependent toxicity of silver nanomaterials on the cladocerans Daphnia magna and Daphnia galeata. Chemosphere, 2017, 185, 205-212.	4.2	41
96	Exoenzyme activity in contaminated soils before and after soil washing: ß-glucosidase activity as a biological indicator of soil health. Ecotoxicology and Environmental Safety, 2017, 135, 368-374.	2.9	64
97	Multigenerational effects of gold nanoparticles in Caenorhabditis elegans: Continuous versus intermittent exposures. Environmental Pollution, 2017, 220, 46-52.	3.7	50
98	Long-term effects of ZnO nanoparticles on exoenzyme activities in planted soils. Environmental Engineering Research, 2017, 22, 224-229.	1.5	18
99	Effects of titanium oxide nanoparticles on Oryzias latipes embryos and sac-fry under different irradiation conditions. Environmental Engineering Research, 2017, 22, 426-431.	1.5	2
100	An Introductory Research for Development of Soil Ecological Risk Assessment in Korea. Daehan Hwan'gyeong Gonghag Hoeji, 2017, 39, 348-355.	0.4	7
101	Accelerated ecotoxicity of photoreactive nanoparticles on Moina macrocopa. Environmental Health and Toxicology, 2017, 32, e2017007.	1.8	4
102	Continuous ultraviolet irradiation increases the adverse effects of photoreactive nanoparticles on the early development of Oryzias latipes. Environmental Toxicology and Chemistry, 2016, 35, 1195-1200.	2.2	5
103	Paper-disc method: An efficient assay for evaluating metal toxicity to soil algae. Environmental Pollution, 2016, 216, 1-8.	3.7	25
104	The Comparative and Combined Inhibitory Effects of MTBE and TBA on the Activities of Soil Exoenzymes. Soil and Sediment Contamination, 2016, 25, 408-418.	1.1	1
105	Physiological and psychological responses of humans to the index of greenness of an interior space. Complementary Therapies in Medicine, 2016, 28, 37-43.	1.3	46
106	The current state of the art in research on engineered nanomaterials and terrestrial environments: Different-scale approaches. Environmental Research, 2016, 151, 368-382.	3.7	35
107	Assessing the toxicity and the dissolution rate of zinc oxide nanoparticles using a dual-color Escherichia coli whole-cell bioreporter. Chemosphere, 2016, 163, 429-437.	4.2	5
108	Effect of fluoride on the cell viability, cell organelle potential, andÂphotosynthetic capacity of freshwater and soil algae. Environmental Pollution, 2016, 219, 359-367.	3.7	27

#	Article	IF	CITATIONS
109	Probabilistic risk assessment of inhalation of nickel-rich soil particulates on Jeju Island, Korea. Human and Ecological Risk Assessment (HERA), 2016, 22, 1301-1311.	1.7	3
110	Trophic transfer of silver nanoparticles from earthworms disrupts the locomotion of springtails (Collembola). Journal of Hazardous Materials, 2016, 315, 110-116.	6.5	43
111	Fluorescent approach for visually observing quantum dot uptake in living organisms. Chemosphere, 2016, 144, 1763-1770.	4.2	15
112	Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems. Nanotoxicology, 2016, 10, 521-530.	1.6	41
113	InÂvivo visual evaluation of nanoparticle transfer in a three-species terrestrial food chain. Chemosphere, 2016, 151, 101-107.	4.2	12
114	Simultaneous detection of bioavailable arsenic and cadmium in contaminated soils using dual-sensing bioreporters. Applied Microbiology and Biotechnology, 2016, 100, 3713-3722.	1.7	23
115	Evaluation of bioavailable arsenic and remediation performance using a whole-cell bioreporter. Science of the Total Environment, 2016, 547, 125-131.	3.9	24
116	Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish. Aquatic Toxicology, 2016, 173, 94-104.	1.9	56
117	Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters. Environmental Science and Pollution Research, 2016, 23, 2353-2361.	2.7	17
118	Viability of gut microbes as a complementary earthworm biomarker of metal exposure. Ecological Indicators, 2016, 60, 377-384.	2.6	13
119	Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils. PLoS ONE, 2016, 11, e0154506.	1.1	27
120	Characteristics and Toxicity Sensitivity of Korean Dominant Species Daphnia galeata for Ecotoxicity Testing: Comparative Study with Daphnia magna. Daehan Hwan'gyeong Gonghag Hoeji, 2016, 38, 193-200.	0.4	5
121	Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna. Environmental Pollution, 2015, 201, 10-16.	3.7	34
122	Cell size and the blockage of electron transfer in photosynthesis: Proposed endpoints for algal assays and its application to soil alga Chlorococcum infusionum. Chemosphere, 2015, 128, 85-95.	4.2	23
123	A highly efficient nonchemical method for isolating live nematodes (<i>Caenorhabditis elegans</i>) from soil during toxicity assays. Environmental Toxicology and Chemistry, 2015, 34, 208-213.	2.2	15
124	Conducting a battery of bioassays for gold nanoparticles to derive guideline value for the protection of aquatic ecosystems. Nanotoxicology, 2015, 9, 326-335.	1.6	16
125	Ecotoxicological Effects of Nanomaterials on Earthworms: A Review. Human and Ecological Risk Assessment (HERA), 2015, 21, 1566-1575.	1.7	34
126	Phytotoxicity of arsenic compounds on crop plant seedlings. Environmental Science and Pollution Research, 2015, 22, 11047-11056.	2.7	34

#	Article	IF	Citations
127	Combined toxicities of methyl tert-butyl ether and its metabolite tert-butyl alcohol on earthworms via different exposure routes. Chemosphere, 2015, 128, 191-198.	4.2	11
128	An efficient and reproducible method for improving growth of a soil alga (Chlorococcum) Tj ETQq0 0 0 rgBT /C	Overlock 10	Tf 50 702 Td
129	A review of the ecotoxicological effects of nanowires. International Journal of Environmental Science and Technology, 2015, 12, 1163-1172.	1.8	17
130	Evidence of three-level trophic transfer of quantum dots in an aquatic food chain by using bioimaging. Nanotoxicology, 2015, 9, 407-412.	1.6	31
131	Interaction of citrateâ€coated silver nanoparticles with earthworm coelomic fluid and related cytotoxicity in <i>Eisenia andrei</i> . Journal of Applied Toxicology, 2014, 34, 1145-1154.	1.4	29
132	Derivation of guideline values for gold (III) ion toxicity limits to protect aquatic ecosystems. Water Research, 2014, 48, 126-136.	5.3	39
133	Japanese medaka exposed to gold nanoparticles: Only embryonic exposure generates irreversible hatching failure, developmental failure, and mortality of sac-fry. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 161, 26-32.	1.3	5
134	Zinc oxide nanoparticles delay soybean development: A standard soil microcosm study. Ecotoxicology and Environmental Safety, 2014, 100, 131-137.	2.9	117
135	Jumping behavior of the springtail Folsomia candida as a novel soil quality indicator in metal-contaminated soils. Ecological Indicators, 2014, 38, 67-71.	2.6	15
136	Ecological effects of soil antimony on the crop plant growth and earthworm activity. Environmental Earth Sciences, 2014, 71, 895-900.	1.3	31
137	Derivation of site-specific surface water quality criteria for the protection of aquatic ecosystems near a Korean military training facility. Environmental Science and Pollution Research, 2014, 21, 141-147.	2.7	4
138	Water quality guidelines for chemicals: learning lessons to deliver meaningful environmental metrics. Environmental Science and Pollution Research, 2014, 21, 6-16.	2.7	28
139	Development and implementation of surface water quality standards for protection of human health in Korea. Environmental Science and Pollution Research, 2014, 21, 77-85.	2.7	8
140	Soybean Plants Modify Metal Oxide Nanoparticle Effects on Soil Bacterial Communities. Environmental Science & Environmental Sc	4.6	99
141	A new and sensitive method for measuring in vivo and in vitro cytotoxicity in earthworm coelomocytes by flow cytometry. Environmental Research, 2014, 134, 118-126.	3.7	26
142	Review of the Extraction Methods of Soil Extracts, Soil Elutriates, and Soil Suspensions for Ecotoxicity Assessments. Journal of Soil and Groundwater Environment, 2014, 19, 15-24.	0.1	3
143	Selection of Domestic Test Species Suitable for Korean Soil Ecological Risk Assessment. Daehan Hwan'gyeong Gonghag Hoeji, 2014, 36, 359-366.	0.4	6
144	Establishment of Non-drinking Groundwater Quality Standards: General Contamination Substances. Journal of Soil and Groundwater Environment, 2014, 19, 24-29.	0.1	3

#	Article	IF	Citations
145	Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: No evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere, 2013, 91, 536-544.	4.2	127
146	No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest. Journal of Applied Toxicology, 2013, 33, 1061-1069.	1.4	29
147	The collembola Lobella sokamensis juvenile as a new soil quality indicator of heavy metal pollution. Ecological Indicators, 2013, 27, 56-60.	2.6	23
148	Multigenerational Study of Gold Nanoparticles in <i>Caenorhabditis elegans</i> Effect of Maternal Exposure. Environmental Science & Environmental Scien	4.6	127
149	Chemical Ranking and Scoring Methodology for the Drinking and non-drinking Groundwater pollutants: CROWN (Chemical Ranking of Groundwater PollutaNts). Journal of Soil and Groundwater Environment, 2013, 18, 16-25.	0.1	1
150	Comparative Study of Groundwater Threshold Values in European Commission and Member States for Improving Management of Groundwater Quality in Korea. Journal of Soil and Groundwater Environment, 2013, 18, 23-32.	0.1	3
151	Assessing Adjuvants and Extractants Applicable to Environment-friendly Organic Agro-materials. Journal of Applied Biological Chemistry, 2013, 56, 69-78.	0.2	2
152	Research Trends for Soil-Related Algal Toxicity. Daehan Hwan'gyeong Gonghag Hoeji, 2013, 35, 607-612.	0.4	2
153	Deriving Ecological Protective Concentration of Cadmium for Korean Soil Environment. Environmental Engineering Research, 2013, 18, 241-246.	1.5	3
154	Reply to Lombi et al.: Clear effects of manufactured nanomaterials to soybean. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, .	3.3	1
155	Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2451-6.	3.3	436
156	Interaction of Silver Nanoparticles with Biological Surfaces of Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2012, 77, 64-70.	2.9	78
157	Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis. Applied Microbiology and Biotechnology, 2012, 95, 243-253.	1.7	85
158	Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere, 2012, 86, 491-499.	4.2	324
159	Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere, 2012, 88, 524-529.	4.2	111
160	Construction of a chemical ranking system of soil pollution substances for screening of priority soil contaminants in Korea. Environmental Monitoring and Assessment, 2012, 184, 2193-2204.	1.3	9
161	Microcosm Studies of Nanomaterials in Water and Soil Ecosystems. Daehan Hwan'gyeong Gonghag Hoeji, 2012, 34, 288-294.	0.4	1
162	Derivation of Ecological Protective Concentration using the Probabilistic Ecological Risk Assessment applicable for Korean Water Environment: (I) Cadmium. Toxicological Research, 2012, 28, 129-137.	1.1	5

#	Article	IF	Citations
163	Comparative study of Ecological Risk Assessment : Deriving Soil Ecological Criteria. Journal of Soil and Groundwater Environment, 2012, 17, 1-9.	0.1	6
164	Research Trends for Nanotoxicity Using Soil Nematode Caenorhabditis elegans. Daehan Hwan'gyeong Gonghag Hoeji, 2012, 34, 855-862.	0.4	0
165	Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of the Total Environment, 2011, 409, 1603-1608.	3.9	570
166	Effect of fluorescent silica nanoparticles in embryo and larva of Oryzias latipes: Sonic effect in nanoparticle dispersion. Chemosphere, 2011, 82, 451-459.	4.2	28
167	Assay-dependent effect of silver nanoparticles to Escherichia coli and Bacillus subtilis. Applied Microbiology and Biotechnology, 2011, 92, 1045-1052.	1.7	49
168	Assessment of toxic heavy metals in urban lake sediments as related to urban stressor and bioavailability. Environmental Monitoring and Assessment, 2010, 171, 529-537.	1.3	17
169	Assessing the ecotoxicity of vinyl chloride using green alga P. subcapitata, nematode C. elegans, and the SOS chromotest in a closed system without headspace. Science of the Total Environment, 2010, 408, 3148-3152.	3.9	11
170	Research Trends of Ecotoxicity of Nanoparticles in Soil Environment. Toxicological Research, 2010, 26, 253-259.	1.1	22
171	Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere, 2009, 74, 654-659.	4.2	82
172	Effects of antimony on aquatic organisms (Larva and embryo of Oryzias latipes, Moina macrocopa,) Tj ETQq0 0 C) rgBT /Ov	erlock 10 Tf 5
173	Fridericia peregrinabunda (Enchytraeidae) as a new test species for soil toxicity assessment. Chemosphere, 2009, 77, 325-329.	4.2	13
174	Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (<i>Phaseolus) Tj ETQq0 (Environmental Toxicology and Chemistry, 2008, 27, 1915-1921.</i>	0 0 rgBT /0 2.2	Overlock 10 T 566
175	Comparative and combined toxicities of toluene and methyl tert-butyl ether to an Asian earthworm Perionyx excavatus. Chemosphere, 2008, 71, 407-411.	4.2	23
176	Significant Parameters for Assessing Soil Contaminant-Leaching to Groundwater and Determining Soil Sample Size in Field Survey. Environmental Engineering Research, 2008, 13, 73-78.	1.5	1
177	Partitioning of hydrogen peroxide between the gas and liquid phases in the presence of surfactant. Chemosphere, 2007, 68, 1377-1381.	4.2	1
178	Decreased toxicity to terrestrial plants associated with a mixture of methyl <i>tert</i> à€butyl ether and its metabolite <i>tert</i> à6butyl alcohol. Environmental Toxicology and Chemistry, 2007, 26, 1711-1716.	2.2	4
179	Estimating the Microbial Risk of E. coli in Reclaimed Wastewater Irrigation on Paddy Field. Environmental Monitoring and Assessment, 2007, 129, 53-60.	1.3	35
180	Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere, 2006, 62, 1359-1365.	4.2	74

#	Article	IF	CITATIONS
181	Impact of geochemical stressors on shallow groundwater quality. Science of the Total Environment, 2005, 348, 257-266.	3.9	10
182	Monitoring E. coli and total coliforms in natural spring water as related to recreational mountain areas. Environmental Monitoring and Assessment, 2005, 102, 131-137.	1.3	19
183	Comparison of field-observed and model-predicted plume trends at fuel-contaminated sites: Implications for natural attenuation rates. Journal of Environmental Monitoring, 2005, 7, 1099.	2.1	3
184	Assessing soil ecotoxicity of methyl tert-butyl ether using earthworm bioassay; closed soil microcosm test for volatile organic compounds. Environmental Pollution, 2005, 134, 181-186.	3.7	34
185	Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Science of the Total Environment, 2004, 326, 85-93.	3.9	185
186	Toxicity of Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) Mixtures to Sorghum bicolor and Cucumis sativus. Bulletin of Environmental Contamination and Toxicology, 2004, 72, 1006-11.	1.3	39
187	Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. Applied Microbiology and Biotechnology, 2004, 65, 611-9.	1.7	15
188	Soil ecotoxicity assessment using cadmium sensitive plants. Environmental Pollution, 2004, 127, 21-26.	3.7	174
189	Monitoring Chlorophyll- a as a Measure of Algae in Lake Texoma Marinas. Bulletin of Environmental Contamination and Toxicology, 2003, 70, 606-611.	1.3	8
190	Total, dissolved, and bioavailable metals at Lake Texoma marinas. Environmental Pollution, 2003, 122, 253-259.	3.7	90
191	Groundwater quality surrounding Lake Texoma during short-term drought conditions. Environmental Pollution, 2003, 125, 183-191.	3.7	21
192	Co-Occurrence of MTBE and Benzene, Toluene, Ethylbenzene, and Xylene Compounds at Marinas in Large Reservoir. Journal of Environmental Engineering, ASCE, 2002, 128, 902-906.	0.7	9
193	Solubilization of polycyclic aromatic hydrocarbons by perfluorinated surfactant micelles. Water Research, 2002, 36, 300-308.	5.3	40
194	PAH degradation by UV/H2O2 in perfluorinated surfactant solutions. Water Research, 2002, 36, 309-314.	5. 3	40
195	Water quality at five marinas in Lake Texoma as related to methyl tert-butyl ether (MTBE). Environmental Pollution, 2002, 118, 331-336.	3.7	35
196	Escherichia coli and total coliforms in water and sediments at lake marinas. Environmental Pollution, 2002, 120, 771-778.	3.7	163
197	Toxicity of methyl <i>tert</i> â€butyl ether to plants (<i>Avena sativa</i> , <i>Zea mays</i> , <i>Triticum) Tj ETQq1</i>	1 <u>0.7</u> 8431	4 rgBT /Overl
198	Toxicity of methyl tert-butyl ether to plants (Avena sativa, Zea mays, Triticum aestivum, and Lactuca) Tj ETQq0 0	0 <u>rg</u> βT /Ον	verlock 10 Tf

Youn-Joo An

#	ARTICLE	IF	CITATIONS
199	Micellar effect on the photolysis of hydrogen peroxide. Water Research, 2001, 35, 3276-3279.	5.3	12
200	Influence of Methyl tert -Butyl Ether on Lake Water Algae. Bulletin of Environmental Contamination and Toxicology, 2001, 67, 574-579.	1.3	5
201	Interactions of Perfluorinated Surfactant with Polycyclic Aromatic Hydrocarbons: Critical Micelle Concentration and Solubility Enhancement Measurements. Journal of Colloid and Interface Science, 2001, 242, 419-424.	5.0	17
202	Photochemical treatment of a mixed PAH/surfactant solution for surfactant recovery and reuse. Environmental Progress, 2001, 20, 240-246.	0.8	5