List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2487287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environmental Pollution, 2018, 240, 387-395.	3.7	737
2	Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of the Total Environment, 2011, 409, 1603-1608.	3.9	570
3	Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (<i>Phaseolus) Tj ETQq1 1 Environmental Toxicology and Chemistry, 2008, 27, 1915-1921.</i>	0.784314 2.2	rgBT /Over 566
4	Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Marine Pollution Bulletin, 2017, 124, 624-632.	2.3	438
5	Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2451-6.	3.3	436
6	Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Scientific Reports, 2018, 8, 284.	1.6	328
7	Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere, 2012, 86, 491-499.	4.2	324
8	Mixture Toxicity of Nickel and Microplastics with Different Functional Groups on <i>Daphnia magna</i> . Environmental Science & amp; Technology, 2017, 51, 12852-12858.	4.6	216
9	Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. Journal of Hazardous Materials, 2021, 402, 124034.	6.5	189
10	Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Science of the Total Environment, 2004, 326, 85-93.	3.9	185
11	Soil ecotoxicity assessment using cadmium sensitive plants. Environmental Pollution, 2004, 127, 21-26.	3.7	174
12	Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata. Scientific Reports, 2017, 7, 12095.	1.6	169
13	Soil microplastics inhibit the movement of springtail species. Environment International, 2019, 126, 699-706.	4.8	169
14	Escherichia coli and total coliforms in water and sediments at lake marinas. Environmental Pollution, 2002, 120, 771-778.	3.7	163
15	Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: No evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere, 2013, 91, 536-544.	4.2	127
16	Multigenerational Study of Gold Nanoparticles in <i>Caenorhabditis elegans</i> : Transgenerational Effect of Maternal Exposure. Environmental Science & Technology, 2013, 47, 5393-5399.	4.6	127
17	Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: Focusing on the algal cell to plastic particle size ratio. Aquatic Toxicology, 2019, 216, 105296.	1.9	119
18	Zinc oxide nanoparticles delay soybean development: A standard soil microcosm study. Ecotoxicology and Environmental Safety. 2014, 100, 131-137.	2.9	117

#	Article	IF	CITATIONS
19	Nanoplastic ingestion induces behavioral disorders in terrestrial snails: trophic transfer effects <i>via</i> vascular plants. Environmental Science: Nano, 2020, 7, 975-983.	2.2	112
20	Post COVID-19 pandemic: Biofragmentation and soil ecotoxicological effects of microplastics derived from face masks. Journal of Hazardous Materials, 2021, 416, 126169.	6.5	112
21	Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere, 2012, 88, 524-529.	4.2	111
22	Soybean Plants Modify Metal Oxide Nanoparticle Effects on Soil Bacterial Communities. Environmental Science & Technology, 2014, 48, 13489-13496.	4.6	99
23	Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties. Environmental Pollution, 2020, 258, 113740.	3.7	98
24	Total, dissolved, and bioavailable metals at Lake Texoma marinas. Environmental Pollution, 2003, 122, 253-259.	3.7	90
25	Effect of ZnO and TiO2 nanoparticles preilluminated with UVA and UVB light on Escherichia coli and Bacillus subtilis. Applied Microbiology and Biotechnology, 2012, 95, 243-253.	1.7	85
26	Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere, 2009, 74, 654-659.	4.2	82
27	Potential environmental risk of solar cells: Current knowledge and future challenges. Journal of Hazardous Materials, 2020, 392, 122297.	6.5	82
28	Interaction of Silver Nanoparticles with Biological Surfaces of Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2012, 77, 64-70.	2.9	78
29	Impact of nano-sized plastic on the nutritional value and gut microbiota of whiteleg shrimp Litopenaeus vannamei via dietary exposure. Environment International, 2019, 130, 104848.	4.8	76
30	Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere, 2006, 62, 1359-1365.	4.2	74
31	Zebrafish can recognize microplastics as inedible materials: Quantitative evidence of ingestion behavior. Science of the Total Environment, 2019, 649, 156-162.	3.9	68
32	Exoenzyme activity in contaminated soils before and after soil washing: ß-glucosidase activity as a biological indicator of soil health. Ecotoxicology and Environmental Safety, 2017, 135, 368-374.	2.9	64
33	Effects of food presence on microplastic ingestion and egestion in Mytilus galloprovincialis. Chemosphere, 2020, 240, 124855.	4.2	62
34	Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish. Aquatic Toxicology, 2016, 173, 94-104.	1.9	56
35	The effects of silver nanomaterial shape and size on toxicity to Caenorhabditis elegans in soil media. Chemosphere, 2019, 215, 50-56.	4.2	55
36	Multigenerational effects of gold nanoparticles in Caenorhabditis elegans: Continuous versus intermittent exposures. Environmental Pollution, 2017, 220, 46-52.	3.7	50

#	Article	IF	CITATIONS
37	Effects of bisphenol A in soil on growth, photosynthesis activity, and genistein levels in crop plants (Vigna radiata). Chemosphere, 2018, 209, 875-882.	4.2	50
38	Size- and shape-dependent toxicity of silver nanomaterials in green alga Chlorococcum infusionum. Ecotoxicology and Environmental Safety, 2019, 168, 388-393.	2.9	50
39	Assay-dependent effect of silver nanoparticles to Escherichia coli and Bacillus subtilis. Applied Microbiology and Biotechnology, 2011, 92, 1045-1052.	1.7	49
40	Microplastics from shoe sole fragments cause oxidative stress in a plant (Vigna radiata) and impair soil environment. Journal of Hazardous Materials, 2022, 429, 128306.	6.5	48
41	Physiological and psychological responses of humans to the index of greenness of an interior space. Complementary Therapies in Medicine, 2016, 28, 37-43.	1.3	46
42	Microplastics disrupt accurate soil organic carbon measurement based on chemical oxidation method. Chemosphere, 2021, 276, 130178.	4.2	46
43	Edible size of polyethylene microplastics and their effects on springtail behavior. Environmental Pollution, 2020, 266, 115255.	3.7	44
44	Translocation and chronic effects of microplastics on pea plants (Pisum sativum) in copper-contaminated soil. Journal of Hazardous Materials, 2022, 436, 129194.	6.5	44
45	Trophic transfer of silver nanoparticles from earthworms disrupts the locomotion of springtails (Collembola). Journal of Hazardous Materials, 2016, 315, 110-116.	6.5	43
46	Sustainable Green Process for Environmentally Viable Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1154-1177.	8.8	43
47	Determination of the soil hazardous concentrations of bisphenol A using the species sensitivity approach. Journal of Hazardous Materials, 2018, 344, 390-397.	6.5	42
48	Multispecies toxicity test for silver nanoparticles to derive hazardous concentration based on species sensitivity distribution for the protection of aquatic ecosystems. Nanotoxicology, 2016, 10, 521-530.	1.6	41
49	Dimension-dependent toxicity of silver nanomaterials on the cladocerans Daphnia magna and Daphnia galeata. Chemosphere, 2017, 185, 205-212.	4.2	41
50	Solubilization of polycyclic aromatic hydrocarbons by perfluorinated surfactant micelles. Water Research, 2002, 36, 300-308.	5.3	40
51	PAH degradation by UV/H2O2 in perfluorinated surfactant solutions. Water Research, 2002, 36, 309-314.	5.3	40
52	Toxicity of Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) Mixtures to Sorghum bicolor and Cucumis sativus. Bulletin of Environmental Contamination and Toxicology, 2004, 72, 1006-11.	1.3	39
53	Derivation of guideline values for gold (III) ion toxicity limits to protect aquatic ecosystems. Water Research, 2014, 48, 126-136.	5.3	39
54	Dietary uptake, biodistribution, and depuration of microplastics in the freshwater diving beetle Cybister japonicus: Effects on predacious behavior. Environmental Pollution, 2018, 242, 839-844.	3.7	39

#	Article	IF	CITATIONS
55	Synthetic and natural microfibers induce gut damage in the brine shrimp Artemia franciscana. Aquatic Toxicology, 2021, 232, 105748.	1.9	39
56	Toward Sustainable Environmental Quality: Priority Research Questions for Asia. Environmental Toxicology and Chemistry, 2020, 39, 1485-1505.	2.2	38
57	Development of water quality criteria of ammonia for protecting aquatic life in freshwater using species sensitivity distribution method. Science of the Total Environment, 2018, 634, 934-940.	3.9	37
58	Multigenerational effects of polyethylene terephthalate microfibers in Caenorhabditis elegans. Environmental Research, 2021, 193, 110569.	3.7	37
59	Effects of antimony on aquatic organisms (Larva and embryo of Oryzias latipes, Moina macrocopa,) Tj ETQq1 1	0.784314 4.2	rgBT_/Overloc
60	Combined exposure to microplastics and zinc produces sex-specific responses in the water flea Daphnia magna. Journal of Hazardous Materials, 2021, 420, 126652.	6.5	36
61	Water quality at five marinas in Lake Texoma as related to methyl tert-butyl ether (MTBE). Environmental Pollution, 2002, 118, 331-336.	3.7	35
62	Estimating the Microbial Risk of E. coli in Reclaimed Wastewater Irrigation on Paddy Field. Environmental Monitoring and Assessment, 2007, 129, 53-60.	1.3	35
63	The current state of the art in research on engineered nanomaterials and terrestrial environments: Different-scale approaches. Environmental Research, 2016, 151, 368-382.	3.7	35
64	Soil ecotoxicity study of DEHP with respect to multiple soil species. Chemosphere, 2019, 216, 387-395.	4.2	35
65	Assessing soil ecotoxicity of methyl tert-butyl ether using earthworm bioassay; closed soil microcosm test for volatile organic compounds. Environmental Pollution, 2005, 134, 181-186.	3.7	34
66	Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna. Environmental Pollution, 2015, 201, 10-16.	3.7	34
67	Ecotoxicological Effects of Nanomaterials on Earthworms: A Review. Human and Ecological Risk Assessment (HERA), 2015, 21, 1566-1575.	1.7	34
68	Phytotoxicity of arsenic compounds on crop plant seedlings. Environmental Science and Pollution Research, 2015, 22, 11047-11056.	2.7	34
69	In Situ Evaluation of Crop Productivity and Bioaccumulation of Heavy Metals in Paddy Soils after Remediation of Metal-Contaminated Soils. Journal of Agricultural and Food Chemistry, 2017, 65, 1239-1246.	2.4	34
70	Quantification of silver nanoparticle toxicity to algae in soil via photosynthetic and flow-cytometric analyses. Scientific Reports, 2018, 8, 292.	1.6	34
71	Effects of synthetic and natural microfibers on Daphnia magna–Are they dependent on microfiber type?. Aquatic Toxicology, 2021, 240, 105968.	1.9	34
72	Ecological effects of soil antimony on the crop plant growth and earthworm activity. Environmental Earth Sciences, 2014, 71, 895-900.	1.3	31

#	Article	IF	CITATIONS
73	Evidence of three-level trophic transfer of quantum dots in an aquatic food chain by using bioimaging. Nanotoxicology, 2015, 9, 407-412.	1.6	31
74	Photosynthesis enhancement in four marine microalgal species exposed to expanded polystyrene leachate. Ecotoxicology and Environmental Safety, 2020, 189, 109936.	2.9	30
75	No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest. Journal of Applied Toxicology, 2013, 33, 1061-1069.	1.4	29
76	Interaction of citrateâ€coated silver nanoparticles with earthworm coelomic fluid and related cytotoxicity in <i>Eisenia andrei</i> . Journal of Applied Toxicology, 2014, 34, 1145-1154.	1.4	29
77	Comparative study of the sensitivity of Daphnia galeata and Daphnia magna to heavy metals. Ecotoxicology and Environmental Safety, 2018, 162, 63-70.	2.9	29
78	Effect of fluorescent silica nanoparticles in embryo and larva of Oryzias latipes: Sonic effect in nanoparticle dispersion. Chemosphere, 2011, 82, 451-459.	4.2	28
79	Water quality guidelines for chemicals: learning lessons to deliver meaningful environmental metrics. Environmental Science and Pollution Research, 2014, 21, 6-16.	2.7	28
80	Effect of fluoride on the cell viability, cell organelle potential, andÂphotosynthetic capacity of freshwater and soil algae. Environmental Pollution, 2016, 219, 359-367.	3.7	27
81	Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils. PLoS ONE, 2016, 11, e0154506.	1.1	27
82	A new and sensitive method for measuring in vivo and in vitro cytotoxicity in earthworm coelomocytes by flow cytometry. Environmental Research, 2014, 134, 118-126.	3.7	26
83	Development of a nematode offspring counting assay for rapid and simple soil toxicity assessment. Environmental Pollution, 2018, 236, 91-99.	3.7	26
84	Ecological risk assessment for perfluorooctanoic acid in soil using a species sensitivity approach. Journal of Hazardous Materials, 2020, 382, 121150.	6.5	26
85	Paper-disc method: An efficient assay for evaluating metal toxicity to soil algae. Environmental Pollution, 2016, 216, 1-8.	3.7	25
86	Towards understanding the impact of plastics on freshwater and marine microalgae: A review of the mechanisms and toxicity endpoints. Journal of Hazardous Materials, 2022, 423, 127174.	6.5	25
87	Evaluation of bioavailable arsenic and remediation performance using a whole-cell bioreporter. Science of the Total Environment, 2016, 547, 125-131.	3.9	24
88	A rapid screening method to assess soil algal toxicity: Non-destructive sampling of algal cells using culture medium extraction. Applied Soil Ecology, 2017, 120, 143-152.	2.1	24
89	Comparative and combined toxicities of toluene and methyl tert-butyl ether to an Asian earthworm Perionyx excavatus. Chemosphere, 2008, 71, 407-411.	4.2	23
90	The collembola Lobella sokamensis juvenile as a new soil quality indicator of heavy metal pollution. Ecological Indicators, 2013, 27, 56-60.	2.6	23

#	Article	IF	CITATIONS
91	Cell size and the blockage of electron transfer in photosynthesis: Proposed endpoints for algal assays and its application to soil alga Chlorococcum infusionum. Chemosphere, 2015, 128, 85-95.	4.2	23
92	Simultaneous detection of bioavailable arsenic and cadmium in contaminated soils using dual-sensing bioreporters. Applied Microbiology and Biotechnology, 2016, 100, 3713-3722.	1.7	23
93	Species Sensitivity Distributions for Nonylphenol to Estimate Soil Hazardous Concentration. Environmental Science & Technology, 2017, 51, 13957-13966.	4.6	23
94	Research Trends of Ecotoxicity of Nanoparticles in Soil Environment. Toxicological Research, 2010, 26, 253-259.	1.1	22
95	Deriving hazardous concentrations of phenol in soil ecosystems using a species sensitivity distribution approach. Journal of Hazardous Materials, 2020, 399, 123036.	6.5	22
96	Groundwater quality surrounding Lake Texoma during short-term drought conditions. Environmental Pollution, 2003, 125, 183-191.	3.7	21
97	Physiological response of crop plants to the endocrine-disrupting chemical nonylphenol in the soil environment. Environmental Pollution, 2019, 251, 573-580.	3.7	21
98	Crop-dependent changes in water absorption of expanded polystyrene in soil environments. Chemosphere, 2019, 219, 345-350.	4.2	21
99	Effects of fluorine on crops, soil exoenzyme activities, and earthworms in terrestrial ecosystems. Ecotoxicology and Environmental Safety, 2018, 151, 21-27.	2.9	20
100	Estimation of the soil hazardous concentration of methylparaben using a species sensitivity approach. Environmental Pollution, 2018, 242, 1002-1009.	3.7	20
101	Changes in soil properties after remediation influence the performance and survival of soil algae and earthworm. Ecotoxicology and Environmental Safety, 2019, 174, 189-196.	2.9	20
102	Leaching potential of chemical species from real perovskite and silicon solar cells. Chemical Engineering Research and Design, 2021, 149, 115-122.	2.7	20
103	Critical review of environmental impacts of microfibers in different environmental matrices. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 251, 109196.	1.3	20
104	Toxicity of methyl <i>tert</i> â€butyl ether to plants (<i>Avena sativa</i> , <i>Zea mays</i> , <i>Triticum) Tj ETQq0 (</i>	0.0.rgBT /0 2.2	Overlock 10 7 19
105	Monitoring E. coli and total coliforms in natural spring water as related to recreational mountain areas. Environmental Monitoring and Assessment, 2005, 102, 131-137.	1.3	19
106	An efficient and reproducible method for improving growth of a soil alga (Chlorococcum) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Ti	f 50 142 Td (19
107	Are your shoes safe for the environment? – Toxicity screening of leachates from microplastic fragments of shoe soles using freshwater organisms. Journal of Hazardous Materials, 2022, 421, 126779.	6.5	19

108Long-term effects of ZnO nanoparticles on exoenzyme activities in planted soils. Environmental1.518108Ingineering Research, 2017, 22, 224-229.1.518

#	Article	IF	CITATIONS
109	Interactions of Perfluorinated Surfactant with Polycyclic Aromatic Hydrocarbons: Critical Micelle Concentration and Solubility Enhancement Measurements. Journal of Colloid and Interface Science, 2001, 242, 419-424.	5.0	17
110	Assessment of toxic heavy metals in urban lake sediments as related to urban stressor and bioavailability. Environmental Monitoring and Assessment, 2010, 171, 529-537.	1.3	17
111	A review of the ecotoxicological effects of nanowires. International Journal of Environmental Science and Technology, 2015, 12, 1163-1172.	1.8	17
112	Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters. Environmental Science and Pollution Research, 2016, 23, 2353-2361.	2.7	17
113	Assessing applicability of the paper-disc method used in combination with flow cytometry to evaluate algal toxicity. Environmental Pollution, 2018, 234, 979-987.	3.7	17
114	Sublethal toxicity of PbI2 in perovskite solar cells to fish embryos (Danio rerio and Oryzias latipes): Deformity and growth inhibition. Science of the Total Environment, 2021, 771, 145388.	3.9	17
115	Sub-acute exposure to nanoplastics via two-chain trophic transfer: From brine shrimp Artemia franciscana to small yellow croaker Larimichthys polyactis. Marine Pollution Bulletin, 2022, 175, 113314.	2.3	17
116	Conducting a battery of bioassays for gold nanoparticles to derive guideline value for the protection of aquatic ecosystems. Nanotoxicology, 2015, 9, 326-335.	1.6	16
117	Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. Applied Microbiology and Biotechnology, 2004, 65, 611-9.	1.7	15
118	Jumping behavior of the springtail Folsomia candida as a novel soil quality indicator in metal-contaminated soils. Ecological Indicators, 2014, 38, 67-71.	2.6	15
119	A highly efficient nonchemical method for isolating live nematodes (<i>Caenorhabditis elegans</i>) from soil during toxicity assays. Environmental Toxicology and Chemistry, 2015, 34, 208-213.	2.2	15
120	Fluorescent approach for visually observing quantum dot uptake in living organisms. Chemosphere, 2016, 144, 1763-1770.	4.2	15
121	Ecological hazard assessment of methyl ethyl ketone using the species sensitivity distribution approach in a soil ecosystem. Journal of Hazardous Materials, 2018, 360, 490-497.	6.5	14
122	Fridericia peregrinabunda (Enchytraeidae) as a new test species for soil toxicity assessment. Chemosphere, 2009, 77, 325-329.	4.2	13
123	Viability of gut microbes as a complementary earthworm biomarker of metal exposure. Ecological Indicators, 2016, 60, 377-384.	2.6	13
124	Effects of silver nanowire length and exposure route on cytotoxicity to earthworms. Environmental Science and Pollution Research, 2017, 24, 14516-14524.	2.7	13
125	Soil ecotoxicity of seven endocrineâ€disrupting chemicals: a review. European Journal of Soil Science, 2017, 68, 621-649.	1.8	13
126	Micellar effect on the photolysis of hydrogen peroxide. Water Research, 2001, 35, 3276-3279.	5.3	12

#	Article	IF	CITATIONS
127	InÂvivo visual evaluation of nanoparticle transfer in a three-species terrestrial food chain. Chemosphere, 2016, 151, 101-107.	4.2	12
128	Assessing the ecotoxicity of vinyl chloride using green alga P. subcapitata, nematode C. elegans, and the SOS chromotest in a closed system without headspace. Science of the Total Environment, 2010, 408, 3148-3152.	3.9	11
129	Combined toxicities of methyl tert-butyl ether and its metabolite tert-butyl alcohol on earthworms via different exposure routes. Chemosphere, 2015, 128, 191-198.	4.2	11
130	Rapid in situ assessment for predicting soil quality using an algae-soaked disc seeding assay. Environmental Monitoring and Assessment, 2017, 189, 637.	1.3	11
131	Matricidal hatching can induce multi-generational effects in nematode Caenorhabditis elegans after dietary exposure to nanoparticles. Environmental Science and Pollution Research, 2018, 25, 36394-36402.	2.7	11
132	Effects on photosynthesis and polyphenolic compounds in crop plant mung bean (Vigna radiata) following simulated accidental exposure to hydrogen peroxide. Journal of Hazardous Materials, 2020, 383, 121088.	6.5	11
133	Investigation of Korean Native Organisms for Development of Ecotoxicity Test : (2) Soil Test Species. Daehan Hwan'gyeong Gonghag Hoeji, 2018, 40, 48-57.	0.4	11
134	Research Trend for On-Site Soil Ecotoxicity Evaluation Methods for Field Soil. Daehan Hwan'gyeong Gonghag Hoeji, 2019, 41, 125-131.	0.4	11
135	Soil algae as a potential carrier for nanoplastics: Adsorption and internalization of nanoplastics in algal cells. Science of the Total Environment, 2022, 837, 155678.	3.9	11
136	Toxicity assessment of tire particles released from personal mobilities (bicycles, cars, and electric) Tj ETQq0 0 0 i	rgBT /Ovei 6.5	lock 10 Tf 50
137	Impact of geochemical stressors on shallow groundwater quality. Science of the Total Environment, 2005, 348, 257-266.	3.9	10
138	Application of a soil quality assessment system using ecotoxicological indicators to evaluate contaminated and remediated soils. Environmental Geochemistry and Health, 2020, 42, 1681-1690.	1.8	10
139	Comparative toxicity of potential leachates from perovskite and silicon solar cells in aquatic ecosystems. Aquatic Toxicology, 2021, 237, 105900.	1.9	10
140	Co-Occurrence of MTBE and Benzene, Toluene, Ethylbenzene, and Xylene Compounds at Marinas in Large Reservoir. Journal of Environmental Engineering, ASCE, 2002, 128, 902-906.	0.7	9
141	Construction of a chemical ranking system of soil pollution substances for screening of priority soil contaminants in Korea. Environmental Monitoring and Assessment, 2012, 184, 2193-2204.	1.3	9
142	Development of water quality criteria for arsenic to protect aquatic life based on species sensitivity distribution. Ecotoxicology and Environmental Safety, 2020, 189, 109933.	2.9	9
143	Determination of hazardous concentrations of 2,4-dinitrophenol in freshwater ecosystems based on species sensitivity distributions. Aquatic Toxicology, 2020, 228, 105646.	1.9	9
144	Monitoring Chlorophyll- a as a Measure of Algae in Lake Texoma Marinas. Bulletin of Environmental Contamination and Toxicology, 2003, 70, 606-611.	1.3	8

#	Article	IF	CITATIONS
145	Development and implementation of surface water quality standards for protection of human health in Korea. Environmental Science and Pollution Research, 2014, 21, 77-85.	2.7	8
146	Earthworm dispersal assay for rapidly evaluating soil quality. Environmental Toxicology and Chemistry, 2017, 36, 2766-2772.	2.2	8
147	A novel method for preventing surface film entrapment of water fleas and its application for toxicity testing with heavy metals. Environmental Science and Pollution Research, 2017, 24, 4210-4219.	2.7	8
148	Dissolution of zinc oxide nanoparticles in exposure media of algae, daphnia, and fish embryos for nanotoxicological testing. Chemistry and Ecology, 2018, 34, 229-240.	0.6	8
149	Soil algae pipe assay: ex situ method for the evaluation of soil quality based on soil algae and its application to the pot test. Chemosphere, 2019, 224, 634-636.	4.2	8
150	Salvinia natans: A potential test species for ecotoxicity testing. Environmental Pollution, 2020, 267, 115650.	3.7	8
151	An Introductory Research for Development of Soil Ecological Risk Assessment in Korea. Daehan Hwan'gyeong Gonghag Hoeji, 2017, 39, 348-355.	0.4	7
152	Comparative study of Ecological Risk Assessment : Deriving Soil Ecological Criteria. Journal of Soil and Groundwater Environment, 2012, 17, 1-9.	0.1	6
153	Selection of Domestic Test Species Suitable for Korean Soil Ecological Risk Assessment. Daehan Hwan'gyeong Gonghag Hoeji, 2014, 36, 359-366.	0.4	6
154	Length- and polymer-dependent ecotoxicities of microfibers to the earthworm Eisenia andrei. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 257, 109354.	1.3	6
155	Influence of Methyl tert -Butyl Ether on Lake Water Algae. Bulletin of Environmental Contamination and Toxicology, 2001, 67, 574-579.	1.3	5
156	Photochemical treatment of a mixed PAH/surfactant solution for surfactant recovery and reuse. Environmental Progress, 2001, 20, 240-246.	0.8	5
157	Japanese medaka exposed to gold nanoparticles: Only embryonic exposure generates irreversible hatching failure, developmental failure, and mortality of sac-fry. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 161, 26-32.	1.3	5
158	Continuous ultraviolet irradiation increases the adverse effects of photoreactive nanoparticles on the early development of Oryzias latipes. Environmental Toxicology and Chemistry, 2016, 35, 1195-1200.	2.2	5
159	Assessing the toxicity and the dissolution rate of zinc oxide nanoparticles using a dual-color Escherichia coli whole-cell bioreporter. Chemosphere, 2016, 163, 429-437.	4.2	5
160	Water quality standards for the protection of human health and aquatic ecosystems in Korea: current state and future perspective. Environmental Science and Pollution Research, 2018, 25, 3108-3119.	2.7	5
161	A simple and efficient method for separation of low-density polyethylene films into different micro-sized groups for laboratory investigation. Science of the Total Environment, 2019, 668, 84-89.	3.9	5
162	Multispecies bioassay of propylparaben to derive protective concentrations for soil ecosystems using a species sensitivity distribution approach. Environmental Pollution, 2020, 265, 114891.	3.7	5

#	Article	IF	CITATIONS
163	Assessing potential indicator of endocrine-disrupting property of chemicals using soil invertebrates. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 245, 109036.	1.3	5
164	Estimation of hazardous concentration of toluene in the terrestrial ecosystem through the species sensitivity distribution approach. Environmental Pollution, 2021, 289, 117836.	3.7	5
165	Characteristics and Toxicity Sensitivity of Korean Dominant Species Daphnia galeata for Ecotoxicity Testing: Comparative Study with Daphnia magna. Daehan Hwan'gyeong Gonghag Hoeji, 2016, 38, 193-200.	0.4	5
166	Derivation of Ecological Protective Concentration using the Probabilistic Ecological Risk Assessment applicable for Korean Water Environment: (I) Cadmium. Toxicological Research, 2012, 28, 129-137.	1.1	5
167	Decreased toxicity to terrestrial plants associated with a mixture of methyl <i>tert</i> â€butyl ether and its metabolite <i>tert</i> â€butyl alcohol. Environmental Toxicology and Chemistry, 2007, 26, 1711-1716.	2.2	4
168	Derivation of site-specific surface water quality criteria for the protection of aquatic ecosystems near a Korean military training facility. Environmental Science and Pollution Research, 2014, 21, 141-147.	2.7	4
169	Comparative study of feminine hygiene product regulations in Korea, the European Union, and the United States. Regulatory Toxicology and Pharmacology, 2019, 107, 104397.	1.3	4
170	Species sensitivity distributions for ethylparaben to derive protective concentrations for soil ecosystems. Environmental Geochemistry and Health, 2022, 44, 2435-2449.	1.8	4
171	Derivation of acute copper biotic ligand model-based predicted no-effect concentrations and acute-chronic ratio. Science of the Total Environment, 2021, 780, 146425.	3.9	4
172	Accelerated ecotoxicity of photoreactive nanoparticles on Moina macrocopa. Environmental Health and Toxicology, 2017, 32, e2017007.	1.8	4
173	Comparison of field-observed and model-predicted plume trends at fuel-contaminated sites: Implications for natural attenuation rates. Journal of Environmental Monitoring, 2005, 7, 1099.	2.1	3
174	Probabilistic risk assessment of inhalation of nickel-rich soil particulates on Jeju Island, Korea. Human and Ecological Risk Assessment (HERA), 2016, 22, 1301-1311.	1.7	3
175	Rapid In Situ Biomonitoring of Subsoil Contamination by Applying an Algae-Soaked Disc Seeding Assay. Applied Sciences (Switzerland), 2021, 11, 2463.	1.3	3
176	Selecting Bioassay Test Species at the Screening Level of Soil Ecological Risk Assessments. Applied Sciences (Switzerland), 2021, 11, 4314.	1.3	3
177	Review of the Extraction Methods of Soil Extracts, Soil Elutriates, and Soil Suspensions for Ecotoxicity Assessments. Journal of Soil and Groundwater Environment, 2014, 19, 15-24.	0.1	3
178	Comparative Study of Groundwater Threshold Values in European Commission and Member States for Improving Management of Groundwater Quality in Korea. Journal of Soil and Groundwater Environment, 2013, 18, 23-32.	0.1	3
179	Deriving Ecological Protective Concentration of Cadmium for Korean Soil Environment. Environmental Engineering Research, 2013, 18, 241-246.	1.5	3
180	Establishment of Non-drinking Groundwater Quality Standards: General Contamination Substances. Journal of Soil and Groundwater Environment, 2014, 19, 24-29.	0.1	3

#	Article	IF	CITATIONS
181	A comparative study of management system of unregulated agricultural pesticides in Korea, the European Union, and the United States of America: a review. Journal of Applied Biological Chemistry, 2018, 61, 195-204.	0.2	3
182	Site-specific ecological risk assessment of metal-contaminated soils based on the TRIAD approach. Journal of Hazardous Materials, 2022, 434, 128883.	6.5	3
183	Quantitative assessment of photosynthetic activity of Chlorella (Class Trebouxiophyceae) adsorbed onto soil by using fluorescence imaging. Environmental Pollution, 2019, 254, 112942.	3.7	2
184	Effects of titanium oxide nanoparticles on Oryzias latipes embryos and sac-fry under different irradiation conditions. Environmental Engineering Research, 2017, 22, 426-431.	1.5	2
185	Assessing Adjuvants and Extractants Applicable to Environment-friendly Organic Agro-materials. Journal of Applied Biological Chemistry, 2013, 56, 69-78.	0.2	2
186	Research Trends for Soil-Related Algal Toxicity. Daehan Hwan'gyeong Gonghag Hoeji, 2013, 35, 607-612.	0.4	2
187	Toxicity of methyl tert-butyl ether to plants (Avena sativa, Zea mays, Triticum aestivum, and Lactuca) Tj ETQq1 1	0.784314 2.2	rgBT /Over
188	Applicability Evaluation of Soil Algae Pipe Assay in Silver Nanoparticle-Contaminated Soils. Applied Sciences (Switzerland), 2022, 12, 1890.	1.3	2
189	Earthworm half-pipe assay: A new alternative in vivo skin corrosion test using invertebrates. Environmental Pollution, 2022, 307, 119519.	3.7	2
190	Partitioning of hydrogen peroxide between the gas and liquid phases in the presence of surfactant. Chemosphere, 2007, 68, 1377-1381.	4.2	1
191	Reply to Lombi et al.: Clear effects of manufactured nanomaterials to soybean. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, .	3.3	1
192	The Comparative and Combined Inhibitory Effects of MTBE and TBA on the Activities of Soil Exoenzymes. Soil and Sediment Contamination, 2016, 25, 408-418.	1.1	1
193	Iced block method: An efficient method for preparation of micro-sized expanded polystyrene foams. Environmental Pollution, 2020, 263, 114387.	3.7	1
194	Chemical Ranking and Scoring Methodology for the Drinking and non-drinking Groundwater pollutants: CROWN (Chemical Ranking of Groundwater PollutaNts). Journal of Soil and Groundwater Environment, 2013, 18, 16-25.	0.1	1
195	Significant Parameters for Assessing Soil Contaminant-Leaching to Groundwater and Determining Soil Sample Size in Field Survey. Environmental Engineering Research, 2008, 13, 73-78.	1.5	1
196	Microcosm Studies of Nanomaterials in Water and Soil Ecosystems. Daehan Hwan'gyeong Gonghag Hoeji, 2012, 34, 288-294.	0.4	1
197	Deriving Candidate List of Korean Native Organisms for Ecotoxicity Testing: (2) Soil Test Species. Daehan Hwan'gyeong Gonghag Hoeji, 2019, 41, 177-190.	0.4	1
198	Distribution Status of Domestic Euglena Species and Analysis of Ecotoxicity Studies. Daehan Hwan'gyeong Gonghag Hoeji, 2019, 41, 399-409.	0.4	1

#	Article	IF	CITATIONS
199	Estimation of daily fish intake values for use with water quality criteria for human health assessments in Korea. Environmental Science and Pollution Research, 2018, 25, 3120-3126.	2.7	0
200	Perspectives on microalgae as model organisms toward the standardization of soil algal toxicity test methods. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 249, 109144.	1.3	0
201	Research Trends for Nanotoxicity Using Soil Nematode Caenorhabditis elegans. Daehan Hwan'gyeong Gonghag Hoeji, 2012, 34, 855-862.	0.4	0
202	Validation of the paper-disc soil method using soil alga Chlorococcum infusionum to quantitatively determine the toxicity of heavy metals. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 258, 109380.	1.3	0