Miguel Gueimonde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2487146/publications.pdf Version: 2024-02-01

		14655	16650
208	17,137	66	123
papers	citations	h-index	g-index
214	014	214	17660
214	214	214	17662
all docs	docs citations	times ranked	citing authors
andocs	uoes citations	times ranked	citing autions

#	Article	IF	CITATIONS
1	Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Frontiers in Microbiology, 2016, 7, 185.	3.5	1,443
2	The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	1,118
3	Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition and Food Research, 2017, 61, 1600240.	3.3	678
4	Diversity of Bifidobacteria within the Infant Gut Microbiota. PLoS ONE, 2012, 7, e36957.	2.5	512
5	Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus. MBio, 2014, 5, e01548-14.	4.1	500
6	Antibiotic resistance in probiotic bacteria. Frontiers in Microbiology, 2013, 4, 202.	3.5	417
7	Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World Journal of Gastroenterology, 2014, 20, 15163.	3.3	390
8	Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiology Ecology, 2012, 79, 763-772.	2.7	365
9	Intestinal Microbiota Development in Preterm Neonates and EffectÂofÂPerinatal Antibiotics. Journal of Pediatrics, 2015, 166, 538-544.	1.8	329
10	Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe, 2010, 16, 307-310.	2.1	271
11	Meat as a First Complementary Food for Breastfed Infants: Feasibility and Impact on Zinc Intake and Status. Journal of Pediatric Gastroenterology and Nutrition, 2006, 42, 207-214.	1.8	265
12	Assessing the Fecal Microbiota: An Optimized Ion Torrent 16S rRNA Gene-Based Analysis Protocol. PLoS ONE, 2013, 8, e68739.	2.5	257
13	Maternal breastâ€milk and intestinal bifidobacteria guide the compositional development of the <i>Bifidobacterium</i> microbiota in infants at risk of allergic disease. Clinical and Experimental Allergy, 2007, 37, 1764-1772.	2.9	252
14	Enhanced butyrate formation by cross-feeding between <i>Faecalibacterium prausnitzii</i> and <i>Bifidobacterium adolescentis</i> . FEMS Microbiology Letters, 2015, 362, fnv176.	1.8	250
15	Breast Milk: A Source of Bifidobacteria for Infant Gut Development and Maturation?. Neonatology, 2007, 92, 64-66.	2.0	235
16	Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clinical Nutrition, 2015, 34, 501-507.	5.0	220
17	Exopolysaccharides Produced by Probiotic Strains Modify the Adhesion of Probiotics and Enteropathogens to Human Intestinal Mucus. Journal of Food Protection, 2006, 69, 2011-2015.	1.7	201
18	Exopolysaccharides Produced by Intestinal <i>Bifidobacterium</i> Strains Act as Fermentable Substrates for Human Intestinal Bacteria. Applied and Environmental Microbiology, 2008, 74, 4737-4745.	3.1	197

#	Article	IF	CITATIONS
19	Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Research International, 2004, 37, 839-850.	6.2	192
20	Nutrition and the gut microbiome in the elderly. Gut Microbes, 2017, 8, 82-97.	9.8	191
21	Mucin Degradation by <i>Bifidobacterium</i> Strains Isolated from the Human Intestinal Microbiota. Applied and Environmental Microbiology, 2008, 74, 1936-1940.	3.1	180
22	The relationship between phenolic compounds from diet and microbiota: impact on human health. Food and Function, 2015, 6, 2424-2439.	4.6	180
23	Adhesion of Selected Bifidobacterium Strains to Human Intestinal Mucus and the Role of Adhesion in Enteropathogen Exclusion. Journal of Food Protection, 2005, 68, 2672-2678.	1.7	173
24	Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome, 2017, 5, 93.	11.1	165
25	Immune Modulation Capability of Exopolysaccharides Synthesised by Lactic Acid Bacteria and Bifidobacteria. Probiotics and Antimicrobial Proteins, 2012, 4, 227-237.	3.9	156
26	Probiotics That Modify Disease Risk. Journal of Nutrition, 2005, 135, 1294-1298.	2.9	155
27	New Real-Time Quantitative PCR Procedure for Quantification of Bifidobacteria in Human Fecal Samples. Applied and Environmental Microbiology, 2004, 70, 4165-4169.	3.1	154
28	<i>Bifidobacterium</i> microbiota and parameters of immune function in elderly subjects. FEMS Immunology and Medical Microbiology, 2008, 53, 18-25.	2.7	141
29	Distinct Bifidobacterium strains drive different immune responses in vitro. International Journal of Food Microbiology, 2010, 138, 157-165.	4.7	141
30	Shaping the Metabolism of Intestinal Bacteroides Population through Diet to Improve Human Health. Frontiers in Microbiology, 2017, 8, 376.	3.5	140
31	Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota. Critical Reviews in Food Science and Nutrition, 2016, 56, 1440-1453.	10.3	139
32	Similar bifidogenic effects of prebiotic-supplemented partially hydrolyzed infant formula and breastfeeding on infant gut microbiota. FEMS Immunology and Medical Microbiology, 2005, 43, 59-65.	2.7	136
33	Microbiomic analysis of the bifidobacterial population in the human distal gut. ISME Journal, 2009, 3, 745-751.	9.8	128
34	An Overview on Fecal Branched Short-Chain Fatty Acids Along Human Life and as Related With Body Mass Index: Associated Dietary and Anthropometric Factors. Frontiers in Microbiology, 2020, 11, 973.	3.5	126
35	Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low PH and cross-resistance to bile salts in Bifidobacterium. International Journal of Food Microbiology, 2004, 94, 79-86.	4.7	125
36	Safety of Novel Microbes for Human Consumption: Practical Examples of Assessment in the European Union. Frontiers in Microbiology, 2017, 8, 1725.	3.5	125

#	Article	IF	CITATIONS
37	The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Frontiers in Genetics, 2014, 5, 406.	2.3	124
38	Immune Response to Bifidobacterium bifidum Strains Support Treg/Th17 Plasticity. PLoS ONE, 2011, 6, e24776.	2.5	120
39	Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli. Food Research International, 2006, 39, 467-471.	6.2	114
40	Age-Associated Changes in Gut Microbiota and Dietary Components Related with the Immune System in Adulthood and Old Age: A Cross-Sectional Study. Nutrients, 2019, 11, 1765.	4.1	113
41	Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. International Journal of Food Microbiology, 2011, 149, 28-36.	4.7	109
42	Role of Extracellular Transaldolase from Bifidobacterium bifidum in Mucin Adhesion and Aggregation. Applied and Environmental Microbiology, 2012, 78, 3992-3998.	3.1	109
43	Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study. International Journal of Molecular Sciences, 2016, 17, 649.	4.1	109
44	New methods for selecting and evaluating probiotics. Digestive and Liver Disease, 2006, 38, S242-S247.	0.9	105
45	Qualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel disease. World Journal of Gastroenterology, 2007, 13, 3985.	3.3	102
46	Exopolysaccharide-producing Bifidobacterium strains elicit different in vitro responses upon interaction with human cells. Food Research International, 2012, 46, 99-107.	6.2	102
47	Manufacturing process influences properties of probiotic bacteria. British Journal of Nutrition, 2011, 105, 887-894.	2.3	101
48	Bile Affects the Synthesis of Exopolysaccharides by <i>Bifidobacterium animalis</i> . Applied and Environmental Microbiology, 2009, 75, 1204-1207.	3.1	100
49	Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus. Frontiers in Immunology, 2017, 8, 23.	4.8	95
50	How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes and Nutrition, 2011, 6, 307-318.	2.5	94
51	Comparison of four methods to enumerate probiotic bifidobacteria in a fermented food product. Food Microbiology, 2006, 23, 571-577.	4.2	93
52	The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases. Nutrients, 2020, 12, 2340.	4.1	90
53	Allergic Patients with Long-Term Asthma Display Low Levels of Bifidobacterium adolescentis. PLoS ONE, 2016, 11, e0147809.	2.5	90
54	Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria. Letters in Applied Microbiology, 2008, 46, 693-698.	2.2	83

#	Article	IF	CITATIONS
55	Interactions between Bifidobacterium and Bacteroides Species in Cofermentations Are Affected by Carbon Sources, Including Exopolysaccharides Produced by Bifidobacteria. Applied and Environmental Microbiology, 2013, 79, 7518-7524.	3.1	82
56	Probiotic Bacteria May Become Dormant during Storage. Applied and Environmental Microbiology, 2005, 71, 1662-1663.	3.1	81
57	Insights from genomes of representatives of the human gut commensal <scp><i>B</i></scp> <i>ifidobacterium bifidum</i> . Environmental Microbiology, 2015, 17, 2515-2531.	3.8	80
58	Fermented Dairy Foods: Impact on Intestinal Microbiota and Health-Linked Biomarkers. Frontiers in Microbiology, 2019, 10, 1046.	3.5	79
59	Early microbiota, antibiotics and health. Cellular and Molecular Life Sciences, 2018, 75, 83-91.	5.4	76
60	Two Different Tetracycline Resistance Mechanisms, Plasmid-Carried <i>tet</i> (L) and Chromosomally Located Transposon-Associated <i>tet</i> (M), Coexist in <i>Lactobacillus sakei</i> Rits 9. Applied and Environmental Microbiology, 2008, 74, 1394-1401.	3.1	75
61	Pilot Study of Diet and Microbiota: Interactive Associations of Fibers and Polyphenols with Human Intestinal Bacteria. Journal of Agricultural and Food Chemistry, 2014, 62, 5330-5336.	5.2	75
62	Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids. Frontiers in Immunology, 2017, 8, 823.	4.8	75
63	Facultative to strict anaerobes ratio in the preterm infant microbiota. Gut Microbes, 2012, 3, 583-588.	9.8	73
64	Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium. PLoS ONE, 2015, 10, e0133661.	2.5	73
65	Adhesion Properties and Competitive Pathogen Exclusion Ability of Bifidobacteria with Acquired Acid Resistance. Journal of Food Protection, 2006, 69, 1675-1679.	1.7	72
66	Competitive exclusion of enteropathogens from human intestinal mucus by Bifidobacterium strains with acquired resistance to bile $\hat{a} \in$ A preliminary study. International Journal of Food Microbiology, 2007, 113, 228-232.	4.7	71
67	Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutrition Research, 2013, 33, 811-816.	2.9	70
68	Treg-inducing membrane vesicles from Bifidobacterium bifidum LMG13195 as potential adjuvants in immunotherapy. Vaccine, 2012, 30, 825-829.	3.8	69
69	Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiology Letters, 2013, 340, 1-10.	1.8	68
70	Characterisation of a Bifidobacterium strain with acquired resistance to cholate—A preliminary study. International Journal of Food Microbiology, 2003, 82, 191-198.	4.7	66
71	Bile-Inducible Efflux Transporter from <i>Bifidobacterium longum</i> NCC2705, Conferring Bile Resistance. Applied and Environmental Microbiology, 2009, 75, 3153-3160.	3.1	66
72	Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats. International Journal of Food Microbiology, 2011, 144, 342-351.	4.7	66

#	Article	IF	CITATIONS
73	Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates. Frontiers in Microbiology, 2016, 7, 738.	3.5	66
74	Microbial Targets for the Development of Functional Foods Accordingly with Nutritional and Immune Parameters Altered in the Elderly. Journal of the American College of Nutrition, 2013, 32, 399-406.	1.8	65
75	Adherence to a Mediterranean Diet Influences the Fecal Metabolic Profile of Microbial-Derived Phenolics in a Spanish Cohort of Middle-Age and Older People. Journal of Agricultural and Food Chemistry, 2017, 65, 586-595.	5.2	63
76	Genetic Basis of Tetracycline Resistance in <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> . Applied and Environmental Microbiology, 2010, 76, 3364-3369.	3.1	61
77	Ability of Bifidobacterium strains with acquired resistance to bile to adhere to human intestinal mucus. International Journal of Food Microbiology, 2005, 101, 341-346.	4.7	60
78	Deep 16S rRNA metagenomics and quantitative PCR analyses of the premature infant fecal microbiota. Anaerobe, 2012, 18, 378-380.	2.1	60
79	Probiotic fermented milks: Present and future. International Journal of Dairy Technology, 2009, 62, 472-483.	2.8	57
80	Correlation between inÂvitro and inÂvivo assays in selection of probiotics from traditional species of bacteria. Trends in Food Science and Technology, 2017, 68, 83-90.	15.1	57
81	Probiotic Intervention in Neonates-Will Permanent Colonization Ensue?. Journal of Pediatric Gastroenterology and Nutrition, 2006, 42, 604-606.	1.8	54
82	Presence of specific antibiotic (tet) resistance genes in infant faecal microbiota. FEMS Immunology and Medical Microbiology, 2006, 48, 21-25.	2.7	53
83	Long-Term Coffee Consumption is Associated with Fecal Microbial Composition in Humans. Nutrients, 2020, 12, 1287.	4.1	53
84	Short Communication: Effect of Exopolysaccharide Isolated from "Viili―on the Adhesion of Probiotics and Pathogens to Intestinal Mucus. Journal of Dairy Science, 2006, 89, 2355-2358.	3.4	52
85	Interaction of Bifidobacterium bifidum LMG13195 with HT29 Cells Influences Regulatory-T-Cell-Associated Chemokine Receptor Expression. Applied and Environmental Microbiology, 2012, 78, 2850-2857.	3.1	52
86	Screening of Bifidobacteria and Lactobacilli Able to Antagonize the Cytotoxic Effect of Clostridium difficile upon Intestinal Epithelial HT29 Monolayer. Frontiers in Microbiology, 2016, 7, 577.	3.5	51
87	In vitro fermentation of different fructo-oligosaccharides by Bifidobacterium strains for the selection of synbiotic combinations. International Journal of Food Microbiology, 2017, 242, 19-23.	4.7	50
88	Adaptation of bifidobacteria to the gastrointestinal tract and functional consequences. Pharmacological Research, 2013, 69, 127-136.	7.1	48
89	Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteria. BMC Microbiology, 2016, 16, 150.	3.3	48
90	Characteristics of carbonated fermented milk and survival of probiotic bacteria. International Dairy Journal, 2000, 10, 213-220.	3.0	47

#	Article	IF	CITATIONS
91	Assessment of intestinal microbiota of full-term breast-fed infants from two different geographical locations. Early Human Development, 2011, 87, 511-513.	1.8	47
92	<i>Akkermansia muciniphila</i> and environmental enrichment reverse cognitive impairment associated with high-fat high-cholesterol consumption in rats. Gut Microbes, 2021, 13, 1-20.	9.8	47
93	Metagenomics and probiotics. Clinical Microbiology and Infection, 2012, 18, 32-34.	6.0	46
94	The role of yogurt in food-based dietary guidelines. Nutrition Reviews, 2018, 76, 29-39.	5.8	46
95	Assessment of intestinal microbiota modulation ability of Bifidobacterium strains in inÂvitro fecal batch cultures from preterm neonates. Anaerobe, 2013, 19, 9-16.	2.1	45
96	Fecal microbiota profile in a group of myasthenia gravis patients. Scientific Reports, 2018, 8, 14384.	3.3	45
97	Toward improving technological and functional properties of probiotics in foods. Trends in Food Science and Technology, 2012, 26, 56-63.	15.1	44
98	Catabolism of Glucose and Lactose in Bifidobacterium animalis subsp. lactis, Studied by ¹³ C Nuclear Magnetic Resonance. Applied and Environmental Microbiology, 2013, 79, 7628-7638.	3.1	44
99	Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria. Frontiers in Microbiology, 2015, 6, 825.	3.5	44
100	Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits. PLoS ONE, 2019, 14, e0223019.	2.5	44
101	Microbiome: Effects of Ageing and Diet. Current Issues in Molecular Biology, 2020, 36, 33-62.	2.4	42
102	Removal of the cyanobacterial toxin microcystin-LR by human probiotics. Toxicon, 2005, 46, 111-114.	1.6	41
103	Adhesion of bile-adapted Bifidobacterium strains to the HT29-MTX cell line is modified after sequential gastrointestinal challenge simulated in vitro using human gastric and duodenal juices. Research in Microbiology, 2011, 162, 514-519.	2.1	40
104	Microbiota and Derived Parameters in Fecal Samples of Infants with Non-IgE Cow's Milk Protein Allergy under a Restricted Diet. Nutrients, 2018, 10, 1481.	4.1	40
105	Role of Bifidobacteria on Infant Health. Microorganisms, 2021, 9, 2415.	3.6	40
106	Inflammation Markers and Malnutrition as Risk Factors for Infections and Impaired Health-Related Quality of Life Among Older Nursing Home Residents. Journal of the American Medical Directors Association, 2009, 10, 348-353.	2.5	39
107	Molecular Clues To Understand the Aerotolerance Phenotype of Bifidobacterium animalis subsp. lactis. Applied and Environmental Microbiology, 2012, 78, 644-650.	3.1	39
108	In-vitro characterization of potentially probiotic Lactobacillus strains isolated from human microbiota: interaction with pathogenic bacteria and the enteric cell line HT29. Annals of Microbiology, 2019, 69, 61-72.	2.6	39

#	Article	IF	CITATIONS
109	Coculture of Bifidobacterium longum and Bifidobacterium breve alters their protein expression profiles and enzymatic activities. International Journal of Food Microbiology, 2009, 133, 148-153.	4.7	37
110	C-section and the Neonatal Gut Microbiome Acquisition: Consequences for Future Health. Annals of Nutrition and Metabolism, 2018, 73, 17-23.	1.9	37
111	Different Intestinal Microbial Profile in Over-Weight and Obese Subjects Consuming a Diet with Low Content of Fiber and Antioxidants. Nutrients, 2017, 9, 551.	4.1	36
112	Intestinal Microbiota and Weight-Gain in Preterm Neonates. Frontiers in Microbiology, 2017, 8, 183.	3.5	35
113	Safety of probiotics. Scandinavian Journal of Nutrition, 2004, 48, 42-48.	0.2	34
114	Quality of plain yoghurt made from refrigerated and CO2-treated milk. Food Research International, 2003, 36, 43-48.	6.2	32
115	Immune Modulating Capability of Two Exopolysaccharide-Producing <i>Bifidobacterium</i> Strains in a Wistar Rat Model. BioMed Research International, 2014, 2014, 1-9.	1.9	32
116	Perinatal Microbiomes <i>'</i> Influence on Preterm Birth and Preterms' Health. Journal of Pediatric Gastroenterology and Nutrition, 2016, 63, e193-e203.	1.8	32
117	Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX. Food Research International, 2015, 74, 199-207.	6.2	31
118	Probiotics for Prevention and Treatment of Clostridium difficile Infection. Advances in Experimental Medicine and Biology, 2018, 1050, 161-176.	1.6	31
119	Omics for the study of probiotic microorganisms. Food Research International, 2013, 54, 1061-1071.	6.2	30
120	Assessment of the effect of stress-tolerance acquisition on some basic characteristics of specific probiotics. International Journal of Food Microbiology, 2013, 165, 51-56.	4.7	30
121	Human Studies on Probiotics: What Is Scientifically Proven. Journal of Food Science, 2004, 69, M137.	3.1	29
122	Quantitative assessment of faecal bifidobacterial populations by real-time PCR using lanthanide probes. Journal of Applied Microbiology, 2006, 102, 061120055200067-???.	3.1	29
123	Supplementation with grape pomace in healthy women: Changes in biochemical parameters, gut microbiota and related metabolic biomarkers. Journal of Functional Foods, 2018, 45, 34-46.	3.4	29
124	In Vitro Evaluation of Different Prebiotics on the Modulation of Gut Microbiota Composition and Function in Morbid Obese and Normal-Weight Subjects. International Journal of Molecular Sciences, 2020, 21, 906.	4.1	29
125	Probiotics in Adhesion of Pathogens. , 2010, , 353-370.		28
126	Early-Life Development of the Bifidobacterial Community in the Infant Gut. International Journal of Molecular Sciences, 2021, 22, 3382.	4.1	28

#	Article	IF	CITATIONS
127	Red Wine Consumption Is Associated with Fecal Microbiota and Malondialdehyde in a Human Population. Journal of the American College of Nutrition, 2015, 34, 135-141.	1.8	26
128	<i>In vitro</i> evaluation of the impact of human background microbiota on the response to <i>Bifidobacterium</i> strains and fructo-oligosaccharides. British Journal of Nutrition, 2013, 110, 2030-2036.	2.3	25
129	Could Fecal Phenylacetic and Phenylpropionic Acids Be Used as Indicators of Health Status?. Journal of Agricultural and Food Chemistry, 2018, 66, 10438-10446.	5.2	25
130	Exploring the interactions between serum free fatty acids and fecal microbiota in obesity through a machine learning algorithm. Food Research International, 2019, 121, 533-541.	6.2	25
131	Induction of α-l-arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Archives of Microbiology, 2007, 187, 145-153.	2.2	24
132	Evaluation of the ability of Bifidobacterium longum to metabolize human intestinal mucus. FEMS Microbiology Letters, 2011, 314, 125-130.	1.8	24
133	Comparison of Different Dietary Indices as Predictors of Inflammation, Oxidative Stress and Intestinal Microbiota in Middle-Aged and Elderly Subjects. Nutrients, 2020, 12, 3828.	4.1	24
134	Enhancing probiotic stability in industrial processes. Microbial Ecology in Health and Disease, 2012, 23,	3.5	22
135	The Effects of <i>Bifidobacterium breve</i> on Immune Mediators and Proteome of HT29 Cells Monolayers. BioMed Research International, 2015, 2015, 1-6.	1.9	21
136	Microbiota intestinal y salud. GastroenterologÃa Y HepatologÃa, 2021, 44, 519-535.	0.5	21
137	Monitoring in real time the cytotoxic effect of Clostridium difficile upon the intestinal epithelial cell line HT29. Journal of Microbiological Methods, 2015, 119, 66-73.	1.6	20
138	Gut Microbiome Characteristics in feral and domesticated horses from different geographic locations. Communications Biology, 2022, 5, 172.	4.4	20
139	The genomics of probiotic intestinal microorganisms. Genome Biology, 2005, 6, 225.	9.6	19
140	Microbial–Host Interactions: Selecting the Right Probiotics and Prebiotics for Infants. Nestle Nutrition Workshop Series Paediatric Programme, 2009, 64, 201-217.	1.5	19
141	Insights into the Ropy Phenotype of the Exopolysaccharide-Producing Strain Bifidobacterium animalis subsp. <i>lactis</i> A1dOxR. Applied and Environmental Microbiology, 2013, 79, 3870-3874.	3.1	19
142	Intestinal Microbiota as Modulators of the Immune System. Journal of Immunology Research, 2015, 2015, 1-4.	2.2	19
143	Fecal Changes Following Introduction of Milk in Infants With Outgrowing Non-IgE Cow's Milk Protein Allergy Are Influenced by Previous Consumption of the Probiotic LGG. Frontiers in Immunology, 2019, 10, 1819.	4.8	19
144	Impact of Extreme Obesity and Dietâ€Induced Weight Loss on the Fecal Metabolome and Gut Microbiota. Molecular Nutrition and Food Research, 2021, 65, e2000030.	3.3	19

#	Article	IF	CITATIONS
145	Daily ingestion of Akkermansia mucciniphila for oneÂmonth promotes healthy aging and increases lifespan in old female mice. Biogerontology, 2022, 23, 35-52.	3.9	19
146	Assessment of stress tolerance acquisition in the heat-tolerant derivative strains of <i>Bifidobacterium animalis</i> subsp. <i>lactis </i> BB-12 and <i>Lactobacillus rhamnosus</i> GG. Journal of Applied Microbiology, 2014, 117, 239-248.	3.1	18
147	Bioactive compounds from regular diet and faecal microbial metabolites. European Journal of Nutrition, 2018, 57, 487-497.	3.9	18
148	How strong is the evidence that gut microbiota composition can be influenced by lifestyle interventions in a cardio-protective way?. Atherosclerosis, 2020, 311, 124-142.	0.8	18
149	Controlled Gene Expression in Bifidobacteria by Use of a Bile-Responsive Element. Applied and Environmental Microbiology, 2012, 78, 581-585.	3.1	17
150	Selection of potential probiotic bifidobacteria and prebiotics for elderly by using in vitro faecal batch cultures. European Food Research and Technology, 2017, 243, 157-165.	3.3	17
151	Genome Sequence of the Antarctic Psychrophile Bacterium Planococcus antarcticus DSM 14505. Journal of Bacteriology, 2012, 194, 4465-4465.	2.2	16
152	Development of probiotic products for nutritional requirements of specific human populations. Engineering in Life Sciences, 2012, 12, 368-376.	3.6	16
153	The establishment of the infant intestinal microbiome is not affected by rotavirus vaccination. Scientific Reports, 2015, 4, 7417.	3.3	15
154	Supplementation of xylitol-containing chewing gum with probiotics: a double blind, randomised pilot study focusing on saliva flow and saliva properties. Food and Function, 2016, 7, 1601-1609.	4.6	15
155	Transmission and persistence of IncF conjugative plasmids in the gut microbiota of full-term infants. FEMS Microbiology Ecology, 2018, 94, .	2.7	15
156	Influence of 2′-Fucosyllactose on the Microbiota Composition and Metabolic Activity of Fecal Cultures from Breastfed and Formula-Fed Infants at Two Months of Age. Microorganisms, 2021, 9, 1478.	3.6	15
157	Fecal <i>Bifidobacterium</i> Levels in Elderly Nursing Home Patients. Bioscience and Microflora, 2010, 29, 111-113.	0.5	14
158	Production of immune response mediators by HT-29 intestinal cell-lines in the presence of Bifidobacterium-treated infant microbiota. Beneficial Microbes, 2015, 6, 543-552.	2.4	14
159	Nutritional composition of processed baby foods targeted at infants from 0–12 months. Journal of Food Composition and Analysis, 2019, 79, 55-62.	3.9	14
160	Safety Assessment of Probiotics. , 2009, , 1193-1235.		14
161	Inhibition of Bacillus cereus growth in carbonated fermented bifidus milk. Food Microbiology, 2003, 20, 519-526.	4.2	13
162	Gut Microbiota in Infants between 6 and 24 Months of Age. , 2005, 56, 43-56.		13

#	Article	IF	CITATIONS
163	Assuring the continued safety of lactic acid bacteria used as probiotics. Biologia (Poland), 2006, 61, 755-760.	1.5	13
164	Bifidobacterium longum subsp. infantis CECT7210 (B. infantis IM-1®) Displays In Vitro Activity against Some Intestinal Pathogens. Nutrients, 2020, 12, 3259.	4.1	13
165	Donated Human Milk as a Determinant Factor for the Gut Bifidobacterial Ecology in Premature Babies. Microorganisms, 2020, 8, 760.	3.6	13
166	Maternal Diet Is Associated with Human Milk Oligosaccharide Profile. Molecular Nutrition and Food Research, 2022, 66, .	3.3	13
167	<i>Bifidobacterium breve</i> IPLA20005 affects in vitro the expression of <i>hly</i> and <i>luxS</i> genes, related to the virulence of <i>Listeria monocytogenes</i> Lm23. Canadian Journal of Microbiology, 2018, 64, 215-221.	1.7	12
168	Effect of bacteria used in food industry on the proliferation and cytokine production of epithelial intestinal cellular lines. Journal of Functional Foods, 2014, 6, 348-355.	3.4	11
169	Evolution of carbohydrate fraction in carbonated fermented milks as affected by β-galactosidase activity of starter strains. Journal of Dairy Research, 2002, 69, 125-137.	1.4	10
170	Clucolytic fingerprinting reveals metabolic groups within the genus Bifidobacterium: an exploratory study. Beneficial Microbes, 2016, 7, 265-273.	2.4	10
171	New players in the relationship between diet and microbiota: the role of macromolecular antioxidant polyphenols. European Journal of Nutrition, 2021, 60, 1403-1413.	3.9	10
172	Levels of Predominant Intestinal Microorganisms in 1 Month-Old Full-Term Babies and Weight Gain during the First Year of Life. Nutrients, 2021, 13, 2412.	4.1	10
173	Genome Sequence of Parascardovia denticolens IPLA 20019, Isolated from Human Breast Milk. Journal of Bacteriology, 2012, 194, 4776-4777.	2.2	9
174	Effect of clinical and probiotic Lactobacillus rhamnosus strains on intestinal permeability and bacterial translocation in healthy and colitic rats. Food Research International, 2009, 42, 636-640.	6.2	8
175	A proteomic approach towards understanding the cross talk between <i>Bacteroides fragilis</i> and <i>Bifidobacterium longum</i> in coculture. Canadian Journal of Microbiology, 2016, 62, 623-628.	1.7	8
176	In vitro Selection of Probiotics for Microbiota Modulation in Normal-Weight and Severely Obese Individuals: Focus on Gas Production and Interaction With Intestinal Epithelial Cells. Frontiers in Microbiology, 2021, 12, 630572.	3.5	8
177	Gut microbes and health. GastroenterologÃa Y HepatologÃa (English Edition), 2021, 44, 519-535.	0.1	8
178	Effect of Intrapartum Antibiotics Prophylaxis on the Bifidobacterial Establishment within the Neonatal Gut. Microorganisms, 2021, 9, 1867.	3.6	8
179	Fatty acids intake and immune parameters in the elderly. Nutricion Hospitalaria, 2013, 28, 474-8.	0.3	8
180	The Therapeutic Role of Exercise and Probiotics in Stressful Brain Conditions. International Journal of Molecular Sciences, 2022, 23, 3610.	4.1	8

#	Article	IF	CITATIONS
181	In Vitro Probiotic Modulation of the Intestinal Microbiota and 2′Fucosyllactose Consumption in Fecal Cultures from Infants at Two Months of Age. Microorganisms, 2022, 10, 318.	3.6	7
182	Real-time monitoring of HT29 epithelial cells as an in vitro model for assessing functional differences among intestinal microbiotas from different human population groups. Journal of Microbiological Methods, 2018, 152, 210-216.	1.6	6
183	Identification and Characterization of Human Observational Studies in Nutritional Epidemiology on Gut Microbiomics for Joint Data Analysis. Nutrients, 2021, 13, 3292.	4.1	6
184	Population Dynamics of Some Relevant Intestinal Microbial Groups in Human Fecal Batch Cultures with Added Fermentable Xylooligosaccharides Obtained from Rice Husks. BioResources, 2013, 8, .	1.0	5
185	Impact of probiotics on development and behaviour in Drosophila melanogaster – a potential in vivo model to assess probiotics. Beneficial Microbes, 2019, 10, 179-188.	2.4	5
186	Needle in a Whey-Stack: PhRACS as a Discovery Tool for Unknown Phage-Host Combinations. MBio, 2022, 13, e0333421.	4.1	5
187	Proteolysis in rennet-coagulated Spanish hard cheeses made from milk preserved by refrigeration and addition of carbon dioxide. Journal of Dairy Research, 2003, 70, 115-122.	1.4	4
188	Microbiota, Food, and Health. International Journal of Molecular Sciences, 2019, 20, 6329.	4.1	4
189	Use of Fecal Slurry Cultures to Study In Vitro Effects of Bacteriocins on the Gut Bacterial Populations of Infants. Probiotics and Antimicrobial Proteins, 2020, 12, 1218-1225.	3.9	4
190	Effect of inulin-type fructans and galactooligosaccharides on cultures of <i>Lactobacillus</i> strains isolated in Algeria from camel's milk and human colostrum. Food Science and Technology International, 2021, 27, 223-233.	2.2	4
191	Intestinal microbiota alterations by dietary exposure to chemicals from food cooking and processing. Application of data science for risk prediction. Computational and Structural Biotechnology Journal, 2021, 19, 1081-1091.	4.1	4
192	Current and Future Applications of Probiotics. Current Nutrition and Food Science, 2011, 7, 170-180.	0.6	3
193	Genome Sequence of the Immunomodulatory Strain Bifidobacterium bifidum LMG 13195. Journal of Bacteriology, 2012, 194, 6997-6997.	2.2	3
194	Intestinal Immunomodulation and Shifts on the Gut Microbiota of BALB/c Mice Promoted by Two <i>Bifidobacterium</i> and <i>Lactobacillus</i> Strains Isolated from Human Samples. BioMed Research International, 2019, 2019, 1-8.	1.9	3
195	Identification of Nutritional Targets in Spanish Children Belonging to the LAyDI Cohort for the Development of Health Promotion Strategies in the First Two Years of Life. International Journal of Environmental Research and Public Health, 2021, 18, 939.	2.6	3
196	Resistance of Bifidobacteria Toward Antibiotics. Methods in Molecular Biology, 2021, 2278, 195-208.	0.9	3
197	Preterm Delivery: Microbial Dysbiosis, Gut Inflammation and Hyperpermeability. Frontiers in Microbiology, 2021, 12, 806338.	3.5	3
198	Early Life Nutrition and the Role of Complementary Feeding on Later Adherence to the Mediterranean Diet in Children up to 3 Years of Age. Nutrients, 2022, 14, 1664.	4.1	2

#	Article	IF	CITATIONS
199	Microbiota of the Intestine: Probiotics. , 2013, , 175-181.		1
200	Reply: "Letter to the editor Re: Diaz M., et al. Nutrients 2018, 10, 1481― Nutrients, 2019, 11, 476.	4.1	1
201	Longitudinal Study Depicting Differences in Complementary Feeding and Anthropometric Parameters in Late Preterm Infants up to 2 Years of Age. Nutrients, 2021, 13, 982.	4.1	1
202	Baby's First Microbes: The Microbiome of Human Milk. , 2019, , 3-33.		1
203	MICROBIOTA OF THE INTESTINE Probiotics. , 2005, , 244-251.		1
204	Effect of an α-Tocopherol-Containing Antioxidant Parenteral Emulsion upon Gut Microbiota in Preterm Infants. International Journal of Child Health and Nutrition, 2015, 4, 90-93.	0.1	1
205	3rd International Symposium on Propionibacteria and Bifidobacteria: Dairy and Probiotic Applications, Oviedo 1–4 June 2010. International Journal of Food Microbiology, 2011, 149, 1.	4.7	Ο
206	Isolation, Identification and Characterisation of Potential New Probiotics. , 2015, , 3-25.		0
207	Diet and Microbiota During Pregnancy. , 2021, , .		Ο
208	Diet and Microbiota in the Elderly. , 2021, , 55-55.		0