Wenjia Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/248663/publications.pdf

Version: 2024-02-01

22 papers 3,022 citations

471061 17 h-index 752256 20 g-index

22 all docs 22 docs citations

times ranked

22

3643 citing authors

#	Article	IF	CITATIONS
1	Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance. Journal of the American Chemical Society, 2017, 139, 6693-6699.	6.6	723
2	Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nature Communications, 2020, 11, 1245.	5.8	408
3	2D-Quasi-2D-3D Hierarchy Structure for Tin Perovskite Solar Cells with Enhanced Efficiency and Stability. Joule, 2018, 2, 2732-2743.	11.7	343
4	Colloidal quantum dot ligand engineering for high performance solar cells. Energy and Environmental Science, 2016, 9, 1130-1143.	15.6	297
5	One-Step Synthesis of Snl ₂ ·(DMSO) _{<i>x</i>} Adducts for High-Performance Tin Perovskite Solar Cells. Journal of the American Chemical Society, 2021, 143, 10970-10976.	6.6	280
6	Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nature Photonics, 2022, 16, 352-358.	15.6	233
7	Solution-processed upconversion photodetectors based on quantum dots. Nature Electronics, 2020, 3, 251-258.	13.1	135
8	Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines. Advanced Materials, 2019, 31, e1903559.	11.1	128
9	Highly Efficient Inverted Structural Quantum Dot Solar Cells. Advanced Materials, 2018, 30, 1704882.	11.1	88
10	Integrated Structure and Device Engineering for High Performance and Scalable Quantum Dot Infrared Photodetectors. Small, 2020, 16, e2003397.	5.2	67
11	Inverted Si:PbS Colloidal Quantum Dot Heterojunction-Based Infrared Photodetector. ACS Applied Materials & Samp; Interfaces, 2020, 12, 15414-15421.	4.0	53
12	Ambipolar Graphene–Quantum Dot Phototransistors with CMOS Compatibility. Advanced Optical Materials, 2018, 6, 1800985.	3.6	50
13	Lowâ€Dimensional Inorganic Tin Perovskite Solar Cells Prepared by Templated Growth. Angewandte Chemie - International Edition, 2021, 60, 16330-16336.	7.2	48
14	Quasiâ€2D Bilayer Surface Passivation for High Efficiency Narrow Bandgap Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
15	A Colloidalâ€Quantumâ€Dot Infrared Photodiode with High Photoconductive Gain. Small, 2018, 14, e1803158.	5.2	39
16	High quality silicon: Colloidal quantum dot heterojunction based infrared photodetector. Applied Physics Letters, 2020, 116, .	1.5	38
17	Silicon: quantum dot photovoltage triodes. Nature Communications, 2021, 12, 6696.	5.8	22
18	Lowâ€Dimensional Inorganic Tin Perovskite Solar Cells Prepared by Templated Growth. Angewandte Chemie, 2021, 133, 16466-16472.	1.6	13

#	Article	IF	CITATIONS
19	Large Photomultiplication by Charge-Self-Trapping for High-Response Quantum Dot Infrared Photodetectors. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14783-14790.	4.0	12
20	Quasiâ€2D Bilayer Surface Passivation for High Efficiency Narrow Bandgap Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	5
21	Frontispiz: Lowâ€Dimensional Inorganic Tin Perovskite Solar Cells Prepared by Templated Growth. Angewandte Chemie, 2021, 133, .	1.6	O
22	Frontispiece: Lowâ€Dimensional Inorganic Tin Perovskite Solar Cells Prepared by Templated Growth. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0