Chunyi Zhi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2486399/chunyi-zhi-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 356
 33,654
 100
 172

 papers
 citations
 h-index
 g-index

 380
 41,731
 14
 7.75

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
356	Boft Shorts[Hidden in Zinc Metal Anode Research. <i>Joule</i> , 2022 ,	27.8	31
355	In situ/operando analysis of surface reconstruction of transition metal-based oxygen evolution electrocatalysts. <i>Cell Reports Physical Science</i> , 2022 , 3, 100729	6.1	3
354	In-situ grown porous protective layers with high binding strength for stable Zn anodes. <i>Chemical Engineering Journal</i> , 2022 , 434, 134688	14.7	1
353	Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries <i>Nature Communications</i> , 2022 , 13, 752	17.4	2
352	A Versatile Cation Additive Enabled Highly Reversible Zinc Metal Anode. <i>Advanced Energy Materials</i> , 2022 , 12, 2102780	21.8	14
351	Recent advances and future perspectives for aqueous zinc-ion capacitors 2022 , 1, 022101		2
350	Building durable aqueous K-ion capacitors based on MXene family 2022 , 2		23
349	Ether-Water Hybrid Electrolyte Contributing to Excellent Mg Ion Storage in Layered Sodium Vanadate ACS Nano, 2022,	16.7	3
348	Bifunctional separators design for safe lithium-ion batteries: Suppressed lithium dendrites and fire retardance. <i>Nano Energy</i> , 2022 , 97, 107204	17.1	5
347	Mechanistic Study of Interfacial Modification for Stable Zn Anode Based on a Thin Separator <i>Small</i> , 2022 , e2201045	11	3
346	Bis-ammonium salts with strong chemisorption to halide ions for fast and durable aqueous redox Zn ion batteries. <i>Nano Energy</i> , 2022 , 98, 107278	17.1	О
345	H -Inhibited Organic Anodes for Fast and Long-Life Aqueous Aluminum Ion Batteries with a 3.5-Month Calendar Life <i>Small</i> , 2022 , e2200463	11	1
344	Synergistic modulation of local environment for electrochemical nitrate reduction via asymmetric vacancies and adjacent ion clusters. <i>Nano Energy</i> , 2022 , 98, 107338	17.1	О
343	Reconstructing Vanadium Oxide with Anisotropic Pathways for a Durable and Fast Aqueous K-Ion Battery. <i>ACS Nano</i> , 2021 ,	16.7	5
342	Stabilizing Interface pH by N-Modified Graphdiyne for Dendrite-Free and High-Rate Aqueous Zn-ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	21
341	Recent Advances in Electrolytes for "Beyond Aqueous" Zinc-Ion Batteries. <i>Advanced Materials</i> , 2021 , e2106409	24	23
340	Categorizing wearable batteries: Unidirectional and omnidirectional deformable batteries. <i>Matter</i> , 2021 , 4, 3146-3160	12.7	11

339	Recently advances in flexible zinc ion batteries. <i>Journal of Semiconductors</i> , 2021 , 42, 101603	2.3	6	
338	Conversion-Type Nonmetal Elemental Tellurium Anode with High Utilization for Mild/Alkaline Zinc Batteries. <i>Advanced Materials</i> , 2021 , e2105426	24	10	
337	Intrinsic voltage plateau of a Nb2CTx MXene cathode in an aqueous electrolyte induced by high-voltage scanning. <i>Joule</i> , 2021 ,	27.8	20	
336	Vacancy Modulating Co Sn S Topological Semimetal for Aqueous Zinc-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 61, e202111826	16.4	5	
335	Small-Dipole-Molecule-Containing Electrolytes for High-Voltage Aqueous Rechargeable Batteries. <i>Advanced Materials</i> , 2021 , e2106180	24	14	
334	Stable bismuth-antimony alloy cathode with a conversion-dissolution/deposition mechanism for high-performance zinc batteries. <i>Materials Today</i> , 2021 , 51, 87-87	21.8	2	
333	Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cycle stability and smart switching capability. <i>Nano Research</i> , 2021 , 14, 4154	10	2	
332	Electrochemically induced NiCoSe2@NiOOH/CoOOH heterostructures as multifunctional cathode materials for flexible hybrid zn batteries. <i>Energy Storage Materials</i> , 2021 , 36, 427-434	19.4	27	
331	A Highly Stable and Durable Capacitive Strain Sensor Based on Dynamically Super-Tough Hydro/Organo-Gels. <i>Advanced Functional Materials</i> , 2021 , 31, 2010830	15.6	20	
330	A universal method towards conductive textile for flexible batteries with superior softness. <i>Energy Storage Materials</i> , 2021 , 36, 272-278	19.4	9	
329	Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure. <i>Nature Communications</i> , 2021 , 12, 2400	17.4	32	
328	A reversible Zn-metal battery. <i>Nature Nanotechnology</i> , 2021 , 16, 854-855	28.7	12	
327	Strengthening absorption ability of CoNC as efficient bifunctional oxygen catalyst by modulating the d band center using MoC. <i>Green Energy and Environment</i> , 2021 ,	5.7	3	
326	Carbonaceous and Polymer Materials for Liß Batteries with an Emphasis on Flexible Devices. <i>Advanced Energy and Sustainability Research</i> , 2021 , 2, 2000096	1.6	2	
325	Suppressing passivation layer of Al anode in aqueous electrolytes by complexation of H2PO4Ito Al3+ and an electrochromic Al ion battery. <i>Energy Storage Materials</i> , 2021 , 39, 412-412	19.4	22	
324	The energy storage mechanisms of MnO2 in batteries. Current Opinion in Electrochemistry, 2021, 30, 100	0769	2	
323	Manipulating anion intercalation enables a high-voltage aqueous dual ion battery. <i>Nature Communications</i> , 2021 , 12, 3106	17.4	25	
322	A Self-Healing Crease-Free Supramolecular All-Polymer Supercapacitor. <i>Advanced Science</i> , 2021 , 8, 2100	00326	19	

321	A manganese hexacyanoferrate framework with enlarged ion tunnels and two-species redox reaction for aqueous Al-ion batteries. <i>Nano Energy</i> , 2021 , 84, 105945	17.1	20
320	Energy-dissipative dual-crosslinked hydrogels for dynamically super-tough sensors. <i>Science China Materials</i> , 2021 , 64, 2764-2776	7.1	5
319	Cations Coordination-Regulated Reversibility Enhancement for Aqueous Zn-Ion Battery. <i>Advanced Functional Materials</i> , 2021 , 31, 2105736	15.6	19
318	Non-metallic charge carriers for aqueous batteries. <i>Nature Reviews Materials</i> , 2021 , 6, 109-123	73.3	85
317	Accommodating diverse ions in Prussian blue analogs frameworks for rechargeable batteries: The electrochemical redox reactions. <i>Nano Energy</i> , 2021 , 81, 105632	17.1	31
316	High-Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrier-Hosting Potential Compensation. <i>Angewandte Chemie</i> , 2021 , 133, 5503-5512	3.6	5
315	High-Energy Aqueous Magnesium Hybrid Full Batteries Enabled by Carrier-Hosting Potential Compensation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5443-5452	16.4	21
314	Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc-Iodine Battery with Improved Power and Energy Densities. <i>Angewandte Chemie</i> , 2021 , 133, 3835-3842	3.6	14
313	Electrocatalytic Iodine Reduction Reaction Enabled by Aqueous Zinc-Iodine Battery with Improved Power and Energy Densities. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3791-3798	16.4	26
312	Stretchable Energy Storage Devices: From Materials and Structural Design to Device Assembly. <i>Advanced Energy Materials</i> , 2021 , 11, 2003308	21.8	28
311	Zn electrode/electrolyte interfaces of Zn batteries: A mini review. <i>Electrochemistry Communications</i> , 2021 , 122, 106898	5.1	21
310	Effects of Anion Carriers on Capacitance and Self-Discharge Behaviors of Zinc Ion Capacitors. <i>Angewandte Chemie</i> , 2021 , 133, 1024-1034	3.6	11
309	Effects of Anion Carriers on Capacitance and Self-Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie - International Edition, 2021 , 60, 1011-1021	16.4	70
308	Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. <i>Energy and Environmental Science</i> , 2021 , 14, 3492-3501	35.4	44
307	Activating the IO/I+ redox couple in an aqueous I2In battery to achieve a high voltage plateau. <i>Energy and Environmental Science</i> , 2021 , 14, 407-413	35.4	38
306	Confining Aqueous Zn-Br Halide Redox Chemistry by TiCT MXene. ACS Nano, 2021, 15, 1718-1726	16.7	28
305	Halogenated TiC MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries. <i>ACS Nano</i> , 2021 , 15, 1077-1085	16.7	50
304	Toward Practical High-Areal-Capacity Aqueous Zinc-Metal Batteries: Quantifying Hydrogen Evolution and a Solid-Ion Conductor for Stable Zinc Anodes. <i>Advanced Materials</i> , 2021 , 33, e2007406	24	133

(2021-2021)

303	Initiating a Room-Temperature Rechargeable Aqueous Fluoride-Ion Battery with Long Lifespan through a Rational Buffering Phase Design. <i>Advanced Energy Materials</i> , 2021 , 11, 2003714	21.8	13	
302	Calendar Life of Zn Batteries Based on Zn Anode with Zn Powder/Current Collector Structure. Advanced Energy Materials, 2021 , 11, 2003931	21.8	48	
301	Multi-Functional Hydrogels for Flexible Zinc-Based Batteries Working under Extreme Conditions. <i>Advanced Energy Materials</i> , 2021 , 11, 2101749	21.8	38	
300	3D printing of reduced graphene oxide aerogels for energy storage devices: A paradigm from materials and technologies to applications. <i>Energy Storage Materials</i> , 2021 , 39, 146-165	19.4	22	
299	Regulating nitrogenous adsorption and desorption on Pd clusters by the acetylene linkages of hydrogen substituted graphdiyne for efficient electrocatalytic ammonia synthesis. <i>Nano Energy</i> , 2021 , 86, 106099	17.1	10	
298	Molecular Crowding Effect in Aqueous Electrolytes to Suppress Hydrogen Reduction Reaction and Enhance Electrochemical Nitrogen Reduction. <i>Advanced Energy Materials</i> , 2021 , 11, 2101699	21.8	16	
297	Metal-Iodine and Metal-Bromine Batteries: A Review. <i>Bulletin of the Chemical Society of Japan</i> , 2021 , 94, 2036-2042	5.1	5	
296	Electrolyte/Structure-Dependent Cocktail Mediation Enabling High-Rate/Low-Plateau Metal Sulfide Anodes for Sodium Storage. <i>Nano-Micro Letters</i> , 2021 , 13, 178	19.5	2	
295	High-Rate Aqueous Aluminum-Ion Batteries Enabled by Confined Iodine Conversion Chemistry <i>Small Methods</i> , 2021 , 5, e2100611	12.8	2	
294	Toward a Practical Zn Powder Anode: TiCT MXene as a Lattice-Match Electrons/Ions Redistributor. <i>ACS Nano</i> , 2021 , 15, 14631-14642	16.7	26	
293	Boron Nitride Nanosheet Dispersion at High Concentrations. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 44751-44759	9.5	3	
292	Battery-Sensor Hybrid: A New Gas Sensing Paradigm with Complete Energy Self-Sufficiency. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Ap</i>	9.5	3	
291	Adhesive and cohesive force matters in deformable batteries. Npj Flexible Electronics, 2021, 5,	10.7	2	
290	All-in-one and bipolar-membrane-free acid-alkaline hydrogel electrolytes for flexible high-voltage Zn-air batteries. <i>Chemical Engineering Journal</i> , 2021 , 430, 132718	14.7	8	
289	Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. <i>Energy and Environmental Science</i> , 2021 , 14, 2441-2450	35.4	35	
288	Enhanced Redox Kinetics and Duration of Aqueous I /I Conversion Chemistry by MXene Confinement. <i>Advanced Materials</i> , 2021 , 33, e2006897	24	39	
287	Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinclitrate batteries. <i>Energy and Environmental Science</i> , 2021 , 14, 3938-3944	35.4	41	
286	Human joint-inspired structural design for a bendable/foldable/stretchable/twistable battery: achieving multiple deformabilities. <i>Energy and Environmental Science</i> , 2021 , 14, 3599-3608	35.4	19	

285	Lattice Matching and Halogen Regulation for Synergistically Induced Uniform Zinc Electrodeposition by Halogenated TiC MXenes <i>ACS Nano</i> , 2021 ,	16.7	15
284	Electrochemical Nitrate Production Nitrogen Oxidation with Atomically Dispersed Fe on N-Doped Carbon Nanosheets <i>ACS Nano</i> , 2021 ,	16.7	3
283	Metal-Tellurium Batteries: A Rising Energy Storage System. <i>Small Structures</i> , 2020 , 1, 2000005	8.7	18
282	Stabilized Co3+/Co4+ Redox Pair in In Situ Produced CoSe2\(\mathbb{H}\)-Derived Cobalt Oxides for Alkaline Zn Batteries with 10 000-Cycle Lifespan and 1.9-V Voltage Plateau. <i>Advanced Energy Materials</i> , 2020 , 10, 2000892	21.8	66
281	Phosphorene as Cathode Material for High-Voltage, Anti-Self-Discharge Zinc Ion Hybrid Capacitors. <i>Advanced Energy Materials</i> , 2020 , 10, 2001024	21.8	96
280	Hydrogen-Substituted Graphdiyne Ion Tunnels Directing Concentration Redistribution for Commercial-Grade Dendrite-Free Zinc Anodes. <i>Advanced Materials</i> , 2020 , 32, e2001755	24	136
279	The rise of aqueous rechargeable batteries with organic electrode materials. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 15479-15512	13	48
278	Highly Efficient Electrochemical Reduction of Nitrogen to Ammonia on Surface Termination Modified TiCT MXene Nanosheets. <i>ACS Nano</i> , 2020 , 14, 9089-9097	16.7	71
277	Integration designs toward new-generation wearable energy supply-sensor systems for real-time health monitoring: A minireview. <i>Informal</i> Materilly, 2020 , 2, 1109-1130	23.1	23
276	Energy density issues of flexible energy storage devices. <i>Energy Storage Materials</i> , 2020 , 28, 264-292	19.4	61
275	Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Zn-MnO2 Batteries with Superior Rate Capabilities. <i>Advanced Energy Materials</i> , 2020 , 10, 2000035	21.8	123
274	Initiating a Reversible Aqueous Zn/Sulfur Battery through a "Liquid Film". <i>Advanced Materials</i> , 2020 , 32, e2003070	24	47
273	Boosting the Cycling Stability of Aqueous Flexible Zn Batteries via F Doping in Nickel-Cobalt Carbonate Hydroxide Cathode. <i>Small</i> , 2020 , 16, e2001935	11	30
272	Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. <i>EcoMat</i> , 2020 , 2, e12035	9.4	48
271	Initiating Hexagonal MoO for Superb-Stable and Fast NH Storage Based on Hydrogen Bond Chemistry. <i>Advanced Materials</i> , 2020 , 32, e1907802	24	83
270	Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries. <i>Advanced Materials</i> , 2020 , 32, e1908	124	186
269	Toward efficient and high rate sodium-ion storage: A new insight from dopant-defect interplay in textured carbon anode materials. <i>Energy Storage Materials</i> , 2020 , 28, 55-63	19.4	41
268	Metal-Tuned Acetylene Linkages in Hydrogen Substituted Graphdiyne Boosting the Electrochemical Oxygen Reduction. <i>Small</i> , 2020 , 16, e1907341	11	26

(2020-2020)

267	A zinc battery with ultra-flat discharge plateau through phase transition mechanism. <i>Nano Energy</i> , 2020 , 71, 104583	17.1	43
266	Uniform Virus-Like Co N Cs Electrocatalyst Derived from Prussian Blue Analog for Stretchable Fiber-Shaped ZnAir Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 1908945	15.6	40
265	Latest advances in MXene biosensors. <i>JPhys Materials</i> , 2020 , 3, 031001	4.2	10
264	RBC membrane camouflaged boron nitride nanospheres for enhanced biocompatible performance. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 190, 110964	6	8
263	Commencing mild AgIn batteries with long-term stability and ultra-flat voltage platform. <i>Energy Storage Materials</i> , 2020 , 25, 86-92	19.4	37
262	Phase Transition Induced Unusual Electrochemical Performance of VCT MXene for Aqueous Zinc Hybrid-lon Battery. <i>ACS Nano</i> , 2020 , 14, 541-551	16.7	99
261	Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews, 2020, 49, 180-232	58.5	301
260	A Long-Life Battery-Type Electrochromic Window with Remarkable Energy Storage Ability. <i>Solar Rrl</i> , 2020 , 4, 1900425	7.1	20
259	Suppressing surface passivation of bimetallic phosphide by sulfur for long-life alkaline aqueous zinc batteries. <i>Energy Storage Materials</i> , 2020 , 33, 230-238	19.4	19
258	Thermal conductivity of graphene-based polymer nanocomposites. <i>Materials Science and Engineering Reports</i> , 2020 , 142, 100577	30.9	77
257	Scalable synthesis of 2D hydrogen-substituted graphdiyne on Zn substrate for high-yield N2 fixation. <i>Nano Energy</i> , 2020 , 78, 105283	17.1	21
256	Liquid-Free All-Solid-State Zinc Batteries and Encapsulation-Free Flexible Batteries Enabled by In Situ Constructed Polymer Electrolyte. <i>Angewandte Chemie</i> , 2020 , 132, 24044-24052	3.6	26
255	In Situ Electrochemical Synthesis of MXenes without Acid/Alkali Usage in/for an Aqueous Zinc Ion Battery. <i>Advanced Energy Materials</i> , 2020 , 10, 2001791	21.8	56
254	A rechargeable AlN2 battery for energy storage and highly efficient N2 fixation. <i>Energy and Environmental Science</i> , 2020 , 13, 2888-2895	35.4	26
253	Vertically Aligned Sn4+ Preintercalated Ti2CTX MXene Sphere with Enhanced Zn Ion Transportation and Superior Cycle Lifespan. <i>Advanced Energy Materials</i> , 2020 , 10, 2001394	21.8	71
252	Initiating a wearable solid-state Mg hybrid ion full battery with high voltage, high capacity and ultra-long lifespan in air. <i>Energy Storage Materials</i> , 2020 , 31, 451-458	19.4	13
251	Dendrites in Zn-Based Batteries. <i>Advanced Materials</i> , 2020 , 32, e2001854	24	211
250	Liquid-Free All-Solid-State Zinc Batteries and Encapsulation-Free Flexible Batteries Enabled by In Situ Constructed Polymer Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23836-238	3444	40

249	Aqueous Zinc-Tellurium Batteries with Ultraflat Discharge Plateau and High Volumetric Capacity. <i>Advanced Materials</i> , 2020 , 32, e2001469	24	45
248	Polymers for supercapacitors: Boosting the development of the flexible and wearable energy storage. <i>Materials Science and Engineering Reports</i> , 2020 , 139, 100520	30.9	80
247	An Overview of Fiber-Shaped Batteries with a Focus on Multifunctionality, Scalability, and Technical Difficulties. <i>Advanced Materials</i> , 2020 , 32, e1902151	24	117
246	Aqueous Rechargeable Metal-Ion Batteries Working at Subzero Temperatures. <i>Advanced Science</i> , 2020 , 8, 2002590	13.6	45
245	Recent advances in flexible aqueous zinc-based rechargeable batteries. <i>Nanoscale</i> , 2019 , 11, 17992-180	00,87	54
244	A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. <i>Nano Energy</i> , 2019 , 58, 732-742	17.1	123
243	A flexible rechargeable aqueous zinc manganese-dioxide battery working at 20 °C. Energy and Environmental Science, 2019, 12, 706-715	35.4	333
242	Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. <i>Nano Energy</i> , 2019 , 62, 550-587	17.1	471
241	A Wholly Degradable, Rechargeable Zn-TiC MXene Capacitor with Superior Anti-Self-Discharge Function. <i>ACS Nano</i> , 2019 , 13, 8275-8283	16.7	145
240	Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte <i>RSC Advances</i> , 2019 , 9, 16313-16319	3.7	42
239	Recent Advances in Electrode Fabrication for Flexible Energy-Storage Devices. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900083	6.8	33
238	Inhibiting Grain Pulverization and Sulfur Dissolution of Bismuth Sulfide by Ionic Liquid Enhanced Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) for High-Performance Zinc-Ion Batteries. <i>ACS Nano</i> , 2019 , 13, 7270-7280	16.7	51
237	Activating C-Coordinated Iron of Iron Hexacyanoferrate for Zn Hybrid-Ion Batteries with 10 000-Cycle Lifespan and Superior Rate Capability. <i>Advanced Materials</i> , 2019 , 31, e1901521	24	173
236	Binder-free hierarchical VS2 electrodes for high-performance aqueous Zn ion batteries towards commercial level mass loading. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16330-16338	13	83
235	Boron ink assisted in situ boron nitride coatings for anti-oxidation and anti-corrosion applications. <i>Nanotechnology</i> , 2019 , 30, 335704	3.4	7
234	A Usage Scenario Independent Air Chargeablel Flexible Zinc Ion Energy Storage Device. <i>Advanced Energy Materials</i> , 2019 , 9, 1900509	21.8	59
233	A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. <i>Energy Storage Materials</i> , 2019 , 23, 636-645	19.4	97
232	Nanotoxicity of Boron Nitride Nanosheet to Bacterial Membranes. <i>Langmuir</i> , 2019 , 35, 6179-6187	4	24

231	Super-Stretchable ZincAir Batteries Based on an Alkaline-Tolerant Dual-Network Hydrogel Electrolyte. <i>Advanced Energy Materials</i> , 2019 , 9, 1803046	21.8	185	
230	Evaluating Flexibility and Wearability of Flexible Energy Storage Devices. <i>Joule</i> , 2019 , 3, 613-619	27.8	171	
229	Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2019 , 2, 6490-6496	6.1	117	
228	A Superior EMnO Cathode and a Self-Healing Zn-EMnO Battery. ACS Nano, 2019, 13, 10643-10652	16.7	278	
227	A Highly Elastic and Reversibly Stretchable All-Polymer Supercapacitor. <i>Angewandte Chemie</i> , 2019 , 131, 15854-15858	3.6	21	
226	A Highly Elastic and Reversibly Stretchable All-Polymer Supercapacitor. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15707-15711	16.4	122	
225	Ni3S2/Ni nanosheet arrays for high-performance flexible zinc hybrid batteries with evident two-stage charge and discharge processes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18915-18924	13	39	
224	A Universal Principle to Design Reversible Aqueous Batteries Based on Deposition Dissolution Mechanism. <i>Advanced Energy Materials</i> , 2019 , 9, 1901838	21.8	83	
223	Toward Multifunctional and Wearable Smart Skins with Energy-Harvesting, Touch-Sensing, and Exteroception-Visualizing Capabilities by an All-Polymer Design. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900553	6.4	24	
222	Achieving Both High Voltage and High Capacity in Aqueous Zinc-Ion Battery for Record High Energy Density. <i>Advanced Functional Materials</i> , 2019 , 29, 1906142	15.6	184	
221	Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue In-Service Batteries. <i>Advanced Materials</i> , 2019 , 31, e1903778	24	285	
220	Achieving High-Voltage and High-Capacity Aqueous Rechargeable Zinc Ion Battery by Incorporating Two-Species Redox Reaction. <i>Advanced Energy Materials</i> , 2019 , 9, 1902446	21.8	183	
219	A Flexible Solid-State Aqueous Zinc Hybrid Battery with Flat and High-Voltage Discharge Plateau. <i>Advanced Energy Materials</i> , 2019 , 9, 1902473	21.8	79	
218	Commencing an Acidic Battery Based on a Copper Anode with Ultrafast Proton-Regulated Kinetics and Superior Dendrite-Free Property. <i>Advanced Materials</i> , 2019 , 31, e1905873	24	46	
217	A high-performance flexible direct ethanol fuel cell with drop-and-play function. <i>Nano Energy</i> , 2019 , 65, 104052	17.1	18	
216	Three-dimensional porous boron nitride foam for effective CO2 adsorption. <i>Solid State Communications</i> , 2019 , 294, 1-5	1.6	11	
215	A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7784-7790	13	134	
214	Hydrated hybrid vanadium oxide nanowires as the superior cathode for aqueous Zn battery. Materials Today Energy, 2019 , 14, 100361	7	48	

213	Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices. <i>EcoMat</i> , 2019 , 1, e12008	9.4	55
212	Environmental Stability of MXenes as Energy Storage Materials. Frontiers in Materials, 2019, 6,	4	35
211	Enabling highly efficient, flexible and rechargeable quasi-solid-state zn-air batteries via catalyst engineering and electrolyte functionalization. <i>Energy Storage Materials</i> , 2019 , 20, 234-242	19.4	71
210	Folate-conjugated, mesoporous silica functionalized boron nitride nanospheres for targeted delivery of doxorubicin. <i>Materials Science and Engineering C</i> , 2019 , 96, 552-560	8.3	21
209	MoS2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries. <i>Energy Storage Materials</i> , 2019 , 19, 94-101	19.4	227
208	Temperature-Dependent Lipid Extraction from Membranes by Boron Nitride Nanosheets. <i>ACS Nano</i> , 2018 , 12, 2764-2772	16.7	32
207	Toward Enhancing Wearability and Fashion of Wearable Supercapacitor with Modified Polyurethane Artificial Leather Electrolyte. <i>Nano-Micro Letters</i> , 2018 , 10, 38	19.5	33
206	Boron Element Nanowires Electrode for Supercapacitors. <i>Advanced Energy Materials</i> , 2018 , 8, 1703117	21.8	59
205	A flexible rechargeable zinc-ion wire-shaped battery with shape memory function. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8549-8557	13	103
204	A Building Brick Principle to Create Transparent Composite Films with Multicolor Emission and Self-Healing Function. <i>Small</i> , 2018 , 14, e1800315	11	15
203	Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery. <i>ACS Nano</i> , 2018 , 12, 1949-1958	16.7	255
202	An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. <i>Energy and Environmental Science</i> , 2018 , 11, 941-951	35.4	520
201	Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. <i>Carbon</i> , 2018 , 130, 532-543	10.4	112
200	Carbon-Supported Nickel Selenide Hollow Nanowires as Advanced Anode Materials for Sodium-Ion Batteries. <i>Small</i> , 2018 , 14, 1702669	11	64
199	The S-functionalized TiC Mxene as a high capacity electrode material for Na-ion batteries: a DFT study. <i>Nanoscale</i> , 2018 , 10, 3385-3392	7.7	89
198	Tunable Free-Standing Ultrathin Porous Nickel Film for High Performance Flexible NickelMetal Hydride Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1702467	21.8	24
197	Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen. <i>Energy and Environmental Science</i> , 2018 , 11, 2414-2422	35.4	70
196	Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte. <i>ACS Nano</i> , 2018 , 12, 3140-3148	16.7	305

(2018-2018)

195	Light-weight 3D Co-N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc-air batteries. <i>Nanoscale</i> , 2018 , 10, 10412-10419	7.7	63
194	pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery. <i>International Journal of Nanomedicine</i> , 2018 , 13, 641-652	7.3	32
193	Advances in Flexible and Wearable Energy-Storage Textiles. Small Methods, 2018, 2, 1800124	12.8	87
192	Flexible Waterproof Rechargeable Hybrid Zinc Batteries Initiated by Multifunctional Oxygen Vacancies-Rich Cobalt Oxide. <i>ACS Nano</i> , 2018 , 12, 8597-8605	16.7	184
191	Fiber/Yarn-Based Flexible Supercapacitor 2018 , 37-65		
190	A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes. <i>Science Bulletin</i> , 2018 , 63, 1077-1086	10.6	94
189	Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long-Life Zinc Rechargeable Aqueous Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1801090	21.8	450
188	Vapor-Infiltration Approach toward Selenium/Reduced Graphene Oxide Composites Enabling Stable and High-Capacity Sodium Storage. <i>ACS Nano</i> , 2018 , 12, 7397-7405	16.7	41
187	Integrating a Triboelectric Nanogenerator and a Zinc-Ion Battery on a Designed Flexible 3D Spacer Fabric. <i>Small Methods</i> , 2018 , 2, 1800150	12.8	54
186	LaB6 nanowires for supercapacitors. <i>Materials Today Energy</i> , 2018 , 10, 28-33	7	21
186 185	LaB6 nanowires for supercapacitors. <i>Materials Today Energy</i> , 2018 , 10, 28-33 A Wearable Supercapacitor Engaged with Gold Leaf Gilding Cloth Toward Enhanced Practicability. <i>ACS Applied Materials & District Materials</i> , 2018 , 10, 21297-21305	7 9·5	21
	A Wearable Supercapacitor Engaged with Gold Leaf Gilding Cloth Toward Enhanced Practicability.		19
185	A Wearable Supercapacitor Engaged with Gold Leaf Gilding Cloth Toward Enhanced Practicability. ACS Applied Materials & amp; Interfaces, 2018, 10, 21297-21305 An Intrinsically Self-Healing NiCo Zn Rechargeable Battery with a Self-Healable Ferric-Ion-Crosslinking Sodium Polyacrylate Hydrogel Electrolyte. Angewandte Chemie -	9.5	19
185 184	A Wearable Supercapacitor Engaged with Gold Leaf Gilding Cloth Toward Enhanced Practicability. ACS Applied Materials & amp; Interfaces, 2018, 10, 21297-21305 An Intrinsically Self-Healing NiCo Zn Rechargeable Battery with a Self-Healable Ferric-Ion-Crosslinking Sodium Polyacrylate Hydrogel Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 9810-9813 Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible	9.5	19
185 184 183	A Wearable Supercapacitor Engaged with Gold Leaf Gilding Cloth Toward Enhanced Practicability. ACS Applied Materials & Discrete Angelia Materia Mate	9·5 16.4 17.1 35·4	19 121 88
185 184 183	A Wearable Supercapacitor Engaged with Gold Leaf Gilding Cloth Toward Enhanced Practicability. ACS Applied Materials & Discrete Angelog An Intrinsically Self-Healing NiCo Zn Rechargeable Battery with a Self-Healable Ferric-Ion-Crosslinking Sodium Polyacrylate Hydrogel Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 9810-9813 Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy, 2018, 50, 623-631 Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode. Energy and Environmental Science, 2018, 11, 2521-2530 An Intrinsically Self-Healing NiCo Zn Rechargeable Battery with a Self-Healable	9·5 16.4 17.1 35·4	19 121 88 282
185 184 183 182	A Wearable Supercapacitor Engaged with Gold Leaf Gilding Cloth Toward Enhanced Practicability. <i>ACS Applied Materials & Discord Materials & Materials </i>	9·5 16.4 17.1 35·4	19 121 88 282

177	Graphene stirrer with designed movements: Targeting on environmental remediation and supercapacitor applications. <i>Green Energy and Environment</i> , 2018 , 3, 86-96	5.7	8
176	A Nanofibrillated Cellulose/Polyacrylamide Electrolyte-Based Flexible and Sewable High-Performance Zn-MnO Battery with Superior Shear Resistance. <i>Small</i> , 2018 , 14, e1803978	11	119
175	Self-healable electroluminescent devices. <i>Light: Science and Applications</i> , 2018 , 7, 102	16.7	52
174	Recent Progress of MXene-Based Nanomaterials in Flexible Energy Storage and Electronic Devices. <i>Energy and Environmental Materials</i> , 2018 , 1, 183-195	13	87
173	Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn-MnO Battery and a Flexible Battery-Sensor System. <i>ACS Applied Materials & Compressible Sciences</i> , 2018 , 10, 44527-44534	9.5	75
172	Solid-State Rechargeable Zn//NiCo and ZnAir Batteries with Ultralong Lifetime and High Capacity: The Role of a Sodium Polyacrylate Hydrogel Electrolyte. <i>Advanced Energy Materials</i> , 2018 , 8, 1802288	21.8	146
171	Hydrogel Electrolytes for Flexible Aqueous Energy Storage Devices. <i>Advanced Functional Materials</i> , 2018 , 28, 1804560	15.6	253
170	Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co3O4@polypyrrole coreBhell nanorod bundle array electrodes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 19058-19065	13	79
169	In situ formation of NaTi2(PO4)3 cubes on Ti3C2 MXene for dual-mode sodium storage. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18525-18532	13	36
168	BN nanospheres functionalized with mesoporous silica for enhancing CpG oligodeoxynucleotide-mediated cancer immunotherapy. <i>Nanoscale</i> , 2018 , 10, 14516-14524	7.7	15
167	Spherical Boron Nitride Supported GoldCopper Catalysts for the Low-Temperature Selective Oxidation of Ethanol. <i>ChemCatChem</i> , 2017 , 9, 1363-1367	5.2	22
166	A Highly Durable, Transferable, and Substrate-Versatile High-Performance All-Polymer Micro-Supercapacitor with Plug-and-Play Function. <i>Advanced Materials</i> , 2017 , 29, 1605137	24	139
165	Photoluminescent Ti C MXene Quantum Dots for Multicolor Cellular Imaging. <i>Advanced Materials</i> , 2017 , 29, 1604847	24	439
164	Highly Flexible and Self-Healable Thermal Interface Material Based on Boron Nitride Nanosheets and a Dual Cross-Linked Hydrogel. <i>ACS Applied Materials & Dual Cross-Linked Hydrogel</i> . <i>ACS Applied Materials & Dual Cross-Linked Hydrogel</i> . <i>ACS Applied Materials & Dual Cross-Linked Hydrogel</i> .	9.5	81
163	Recent progresses in high-energy-density all pseudocapacitive-electrode-materials-based asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9443-9464	13	218
162	Recent progress of fiber-shaped asymmetric supercapacitors. <i>Materials Today Energy</i> , 2017 , 5, 1-14	7	51
161	An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9141-9145	16.4	329
160	An Intrinsically Stretchable and Compressible Supercapacitor Containing a Polyacrylamide Hydrogel Electrolyte. <i>Angewandte Chemie</i> , 2017 , 129, 9269-9273	3.6	48

159	Flexible Dual-Mode Tactile Sensor Derived from Three-Dimensional Porous Carbon Architecture. <i>ACS Applied Materials & Discrete Sensor</i> , Interfaces, 2017 , 9, 22685-22693	9.5	33	
158	Functional flexible and wearable supercapacitors. <i>Journal Physics D: Applied Physics</i> , 2017 , 50, 273001	3	23	
157	Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9571-9576	16.4	84	
156	Component Matters: Paving the Roadmap toward Enhanced Electrocatalytic Performance of Graphitic CN-Based Catalysts via Atomic Tuning. <i>ACS Nano</i> , 2017 , 11, 6004-6014	16.7	116	
155	Top-Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. <i>Angewandte Chemie</i> , 2017 , 129, 9699-9704	3.6	26	
154	Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. <i>ACS Nano</i> , 2017 , 11, 3841-3850	16.7	229	
153	Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. <i>Energy and Environmental Science</i> , 2017 , 10, 742-749	35.4	374	
152	Theoretical prediction of MXene-like structured TiC as a high capacity electrode material for Na ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 29106-29113	3.6	33	
151	Recent Progress on Flexible and Wearable Supercapacitors. Small, 2017, 13, 1701827	11	260	
150	Mn3O4 nanoparticles on layer-structured Ti3C2 MXene towards the oxygen reduction reaction and zincBir batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 20818-20823	13	166	
149	Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability. <i>ACS Nano</i> , 2017 , 11, 8953-8961	16.7	237	
148	A high performance fiber-shaped PEDOT@MnO2//C@Fe3O4 asymmetric supercapacitor for wearable electronics. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 14877-14883	13	96	
147	Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection. <i>ACS Applied Materials & Detection (Material)</i> 8, 24837-43	9.5	198	
146	Hydrothermal synthesis of blue-fluorescent monolayer BN and BCNO quantum dots for bio-imaging probes. <i>RSC Advances</i> , 2016 , 6, 79090-79094	3.7	51	
145	Stretchable and Thermally Stable Dual Emission Composite Films of On-Purpose Aggregated Copper Nanoclusters in Carboxylated Polyurethane for Remote White Light-Emitting Devices. <i>ACS Applied Materials & Applied & App</i>	9.5	38	
144	Functionalization of boron nitride nanotubes for applications in nanobiomedicine 2016 , 17-40		5	
143	High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. <i>Nano Energy</i> , 2016 , 27, 230-237	17.1	245	
142	Multifunctional Energy Storage and Conversion Devices. <i>Advanced Materials</i> , 2016 , 28, 8344-8364	24	305	

141	High-performance Transparent and Flexible Asymmetric Supercapacitor based on Graphene-wrapped Amorphous FeOOH Nanowire and Co(OH)2 Nanosheet Transparent Films Produced at air-water interface. <i>Electrochimica Acta</i> , 2016 , 220, 618-627	6.7	41
140	High thermal conductivity and temperature probing of copper nanowire/upconversion nanoparticles/epoxy composite. <i>Composites Science and Technology</i> , 2016 , 130, 63-69	8.6	43
139	Thermally Conductive Electrically Insulating Polymer Nanocomposites 2016, 281-321		3
138	Fabrication of Boron Nitride Nanosheets by Exfoliation. <i>Chemical Record</i> , 2016 , 16, 1204-15	6.6	56
137	Dramatically improved energy conversion and storage efficiencies by simultaneously enhancing charge transfer and creating active sites in MnO x /TiO 2 nanotube composite electrodes. <i>Nano Energy</i> , 2016 , 20, 254-263	17.1	66
136	Facet-Controlling Agents Free Synthesis of Hematite Crystals with High-Index Planes: Excellent Photodegradation Performance and Mechanism Insight. <i>ACS Applied Materials & Distriction</i> (1997) 1016, 8, 142-51	9.5	31
135	A shape memory supercapacitor and its application in smart energy storage textiles. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1290-1297	13	111
134	A modularization approach for linear-shaped functional supercapacitors. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4580-4586	13	42
133	Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors. <i>ACS Applied Materials & District Mat</i>	9.5	82
132	Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs. <i>International Journal of Nanomedicine</i> , 2016 , 11, 4573-4582	7.3	45
131	Field-Effect Transistors: Ultrathin MXene-Micropattern-Based Field-Effect Transistor for Probing Neural Activity (Adv. Mater. 17/2016). <i>Advanced Materials</i> , 2016 , 28, 3411-3411	24	9
130	Highly Integrated Supercapacitor-Sensor Systems via Material and Geometry Design. <i>Small</i> , 2016 , 12, 3393-9	11	71
129	Ultrathin MXene-Micropattern-Based Field-Effect Transistor for Probing Neural Activity. <i>Advanced Materials</i> , 2016 , 28, 3333-9	24	356
128	Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12205-12211	13	92
127	Capacitance Enhancement in a Semiconductor Nanostructure-Based Supercapacitor by Solar Light and a Self-Powered Supercapacitor Photodetector System. <i>Advanced Functional Materials</i> , 2016 , 26, 4481-4490	15.6	105
126	Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. <i>Nano Energy</i> , 2016 , 22, 422-438	17.1	447
125	3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production. <i>Nano Energy</i> , 2016 , 27, 439-446	17.1	80
124	A comprehensive investigation on CVD growth thermokinetics of h-BN white graphene. <i>2D Materials</i> , 2016 , 3, 035007	5.9	23

123	Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene. <i>Advanced Energy Materials</i> , 2016 , 6, 1600969	21.8	439
122	Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers. <i>Nanotechnology</i> , 2015 , 26, 115702	3.4	16
121	Sonication-assisted alcoholysis of boron nitride nanotubes for their sidewalls chemical peeling. <i>Chemical Communications</i> , 2015 , 51, 7104-7	5.8	33
120	Robust reduced graphene oxide paper fabricated with a household non-stick frying pan: a large-area freestanding flexible substrate for supercapacitors. <i>RSC Advances</i> , 2015 , 5, 33981-33989	3.7	32
119	From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. <i>ACS Nano</i> , 2015 , 9, 4766-75	16.7	359
118	An electrochromic supercapacitor and its hybrid derivatives: quantifiably determining their electrical energy storage by an optical measurement. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 21321-2	1327	102
117	Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. <i>Nano Energy</i> , 2015 , 11, 518-525	17.1	214
116	Polyethyleneimine-functionalized boron nitride nanospheres as efficient carriers for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. <i>International Journal of Nanomedicine</i> , 2015 , 10, 5343-53	7.3	27
115	Magnetic-Assisted, Self-Healable, Yarn-Based Supercapacitor. ACS Nano, 2015, 9, 6242-51	16.7	248
114	A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. <i>Nature Communications</i> , 2015 , 6, 10310	17.4	500
113	Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors. <i>ACS Applied Materials & Acs Applied & Ac</i>	9.5	61
112	Facile synthesis of ⊞eO nanodisk with superior photocatalytic performance and mechanism insight. <i>Science and Technology of Advanced Materials</i> , 2015 , 16, 014801	7.1	55
111	Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization. <i>Nanotechnology</i> , 2015 , 26, 015705	3.4	71
110	Honeycomb porous MnO2 nanofibers assembled from radially grown nanosheets for aqueous supercapacitors with high working voltage and energy density. <i>Nano Energy</i> , 2014 , 4, 39-48	17.1	104
109	Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene. <i>ACS Nano</i> , 2014 , 8, 11305-12	16.7	35
108	Polymer composites of boron nitride nanotubes and nanosheets. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 10049-10061	7.1	119
107	Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. <i>Nano Energy</i> , 2014 , 8, 133-140	17.1	206
106	Proton-insertion-enhanced pseudocapacitance based on the assembly structure of tungsten oxide. ACS Applied Materials & amp; Interfaces, 2014, 6, 18901-10	9.5	155

105	High-yield synthesis of boron nitride nanoribbons via longitudinal splitting of boron nitride nanotubes by potassium vapor. <i>ACS Nano</i> , 2014 , 8, 9867-73	16.7	19
104	One-dimensional surface phonon polaritons in boron nitride nanotubes. <i>Nature Communications</i> , 2014 , 5, 4782	17.4	119
103	Boron nitride nanotubes as novel sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons in environmental water samples. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 5751-4	4 ^{4·4}	13
102	Noncovalent Functionalization of Boron Nitride Nanotubes in Aqueous Media Opens Application Roads in Nanobiomedicine. <i>Nanobiomedicine</i> , 2014 , 1, 7	4.8	33
101	Dispersion of boron nitride nanotubes in aqueous solution by simple aromatic molecules. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 3028-33	1.3	12
100	Solvent-free fabrication of thermally conductive insulating epoxy composites with boron nitride nanoplatelets as fillers. <i>Nanoscale Research Letters</i> , 2014 , 9, 643	5	31
99	Weak morphology dependent valence band structure of boron nitride. <i>Journal of Applied Physics</i> , 2013 , 114, 054306	2.5	9
98	Ni(OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. <i>Nano Energy</i> , 2013 , 2, 754-763	17.1	148
97	Preparation and hydrogen sorption performances of BCNO porous microbelts with ultra-narrow and tunable pore widths. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 2936-9	4.5	12
96	Boron nitride porous microbelts for hydrogen storage. <i>ACS Nano</i> , 2013 , 7, 1558-65	16.7	234
95	Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. <i>Nature Communications</i> , 2013 , 4, 2905	17.4	514
94	Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. <i>Chemical Communications</i> , 2013 , 49, 7337-9	5.8	74
93	Polyhedral Oligosilsesquioxane-Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity. <i>Advanced Functional Materials</i> , 2013 , 23, 1824-1831	15.6	420
92	Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons. <i>Nanoscale Research Letters</i> , 2013 , 8, 3	5	39
91	Revealing the anomalous tensile properties of WS2 nanotubes by in situ transmission electron microscopy. <i>Nano Letters</i> , 2013 , 13, 1034-40	11.5	39
90	Ultrathin nanoporous Fe3O4Darbon nanosheets with enhanced supercapacitor performance. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1952	13	149
89	Unusual formation of ⊞e2O3 hexagonal nanoplatelets in N-doped sandwiched graphene chamber for high-performance lithium-ions batteries. <i>Nano Energy</i> , 2013 , 2, 257-267	17.1	88
88	Noncovalent functionalization of boron nitride nanotubes using water-soluble synthetic polymers and the subsequent preparation of superhydrophobic surfaces. <i>Polymer Journal</i> , 2013 , 45, 567-570	2.7	12

(2012-2013)

87	Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites. <i>Journal of Physics: Conference Series</i> , 2013 , 471, 012003	0.3	40
86	Chitosan-coated boron nitride nanospheres enhance delivery of CpG oligodeoxynucleotides and induction of cytokines. <i>International Journal of Nanomedicine</i> , 2013 , 8, 1783-93	7.3	33
85	Nanomaterial engineering and property studies in a transmission electron microscope. <i>Advanced Materials</i> , 2012 , 24, 177-94	24	41
84	High-yield boron nitride nanosheets from 'chemical blowing': towards practical applications in polymer composites. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 314205	1.8	33
83	Efficient disentanglement of boron nitride nanotubes using water-soluble polysaccharides for protein immobilization. <i>RSC Advances</i> , 2012 , 2, 6200	3.7	25
82	A comprehensive analysis of the CVD growth of boron nitride nanotubes. <i>Nanotechnology</i> , 2012 , 23, 215601	3.4	72
81	Synthesis, structural analysis and in situ transmission electron microscopy mechanical tests on individual aluminum matrix/boron nitride nanotube nanohybrids. <i>Acta Materialia</i> , 2012 , 60, 6213-6222	8.4	38
80	Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. <i>Polymer Chemistry</i> , 2012 , 3, 962	4.9	130
79	Low-dimensional boron nitride nanomaterials. <i>Materials Today</i> , 2012 , 15, 256-265	21.8	297
78	Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors. <i>Nanoscale</i> , 2012 , 4, 6318-24	7.7	26
77	Toward Effective Synergetic Effects from Graphene Nanoplatelets and Carbon Nanotubes on Thermal Conductivity of Ultrahigh Volume Fraction Nanocarbon Epoxy Composites. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 23812-23820	3.8	133
76	Cobalt(II,III) oxide hollow structures: fabrication, properties and applications. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23310		142
75	Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. <i>Nanoscale Research Letters</i> , 2012 , 7, 662	5	120
74	CoO octahedral nanocages for high-performance lithium ion batteries. <i>Chemical Communications</i> , 2012 , 48, 4878-80	5.8	119
73	Facile synthesis of vertically aligned hexagonal boron nitride nanosheets hybridized with graphitic domains. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4818		78
72	Ultrahigh torsional stiffness and strength of boron nitride nanotubes. <i>Nano Letters</i> , 2012 , 12, 6347-52	11.5	60
71	Identification of a boron nitride nanosphere-binding peptide for the intracellular delivery of CpG oligodeoxynucleotides. <i>Nanoscale</i> , 2012 , 4, 6343-50	7.7	43
70	ZnO hollow spheres with double-yolk egg structure for high-performance photocatalysts and photodetectors. <i>Advanced Materials</i> , 2012 , 24, 3421-5	24	211

69	Nucleotide-assisted decoration of boron nitride nanotubes with semiconductor quantum dots endows valuable visible-light emission in aqueous solution. <i>Soft Matter</i> , 2011 , 7, 8753	3.6	13
68	Boron nitride nanosheet coatings with controllable water repellency. ACS Nano, 2011 , 5, 6507-15	16.7	234
67	BN nanospheres as CpG ODN carriers for activation of toll-like receptor 9. <i>Journal of Materials Chemistry</i> , 2011 , 21, 5219		34
66	In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano, 2011, 5, 3800-10	16.7	151
65	Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano, 2011, 5, 6571-7	16.7	110
64	X-ray excited optical luminescence from hexagonal boron nitride nanotubes: electronic structures and the role of oxygen impurities. <i>ACS Nano</i> , 2011 , 5, 631-9	16.7	28
63	Dispersible shortened boron nitride nanotubes with improved molecule-loading capacity. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 2530-5	4.5	58
62	"Chemical blowing" of thin-walled bubbles: high-throughput fabrication of large-area, few-layered BN and C(x) -BN nanosheets. <i>Advanced Materials</i> , 2011 , 23, 4072-6	24	184
61	Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm. <i>Nanotechnology</i> , 2011 , 22, 145602	3.4	83
60	Noncovalent functionalization of disentangled boron nitride nanotubes with flavin mononucleotides for strong and stable visible-light emission in aqueous solution. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 627-32	9.5	81
59	Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. <i>Journal of Colloid and Interface Science</i> , 2011 , 359, 261-8	9.3	116
58	Specific heat capacity and density of multi-walled boron nitride nanotubes by chemical vapor deposition. <i>Solid State Communications</i> , 2011 , 151, 183-186	1.6	32
57	Isolation of individual boron nitride nanotubes via peptide wrapping. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4976-7	16.4	80
56	BN nanotubes coated with uniformly distributed Fe3O4 nanoparticles: novel magneto-operable nanocomposites. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1007-1011		41
55	"White graphenes": boron nitride nanoribbons via boron nitride nanotube unwrapping. <i>Nano Letters</i> , 2010 , 10, 5049-55	11.5	643
54	Boron nitride nanotubes and nanosheets. ACS Nano, 2010 , 4, 2979-93	16.7	1699
53	Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4340-4344	3.8	161
52	Functional boron nitride nanotubes 2010 ,		2

(2007-2010)

51	Improved TiO2 photocatalytic reduction by the intrinsic electrostatic potential of BN nanotubes. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 1220-4	4.5	44
50	Recent Advances in Boron Nitride Nanotubes and Nanosheets. <i>Israel Journal of Chemistry</i> , 2010 , 50, 405	5- <u>4</u> .46	21
49	Boron nitride nanotubes. <i>Materials Science and Engineering Reports</i> , 2010 , 70, 92-111	30.9	345
48	Electron-beam irradiation induced conductivity in ZnS nanowires as revealed by in situ transmission electron microscope. <i>Journal of Applied Physics</i> , 2009 , 106, 034302	2.5	8
47	Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature. <i>Nanotechnology</i> , 2009 , 20, 085705	3.4	42
46	Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers. <i>Advanced Functional Materials</i> , 2009 , 19, 1857-1862	15.6	394
45	Single-Crystalline ZnS Nanobelts as Ultraviolet-Light Sensors. <i>Advanced Materials</i> , 2009 , 21, 2034-2039	24	479
44	Large-Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties. <i>Advanced Materials</i> , 2009 , 21, 2889-2893	24	1282
43	Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. <i>Nanotechnology</i> , 2009 , 20, 385707	3.4	111
42	Thermal Conductivity Improvement of Polymer Films by Catechin-Modified Boron Nitride Nanotubes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 13605-13609	3.8	100
41	Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. <i>Nano Letters</i> , 2008 , 8, 491-4	11.5	76
40	New Crystalline Phase Induced by Boron Nitride Nanotubes in Polyaniline. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17592-17595	3.8	17
39	Aqueous noncovalent functionalization and controlled near-surface carbon doping of multiwalled boron nitride nanotubes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8144-5	16.4	126
38	Synthetic Routes and Formation Mechanisms of Spherical Boron Nitride Nanoparticles. <i>Advanced Functional Materials</i> , 2008 , 18, 3653-3661	15.6	164
37	Deformation-driven electrical transport of individual boron nitride nanotubes. <i>Nano Letters</i> , 2007 , 7, 632-7	11.5	162
36	Molecule Ordering Triggered by Boron Nitride Nanotubes and Green Chemical Functionalization of Boron Nitride Nanotubes. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 18545-18549	3.8	33
35	Boron-oxygen luminescence centres in boron-nitrogen systems. Chemical Communications, 2007, 4599-	6 9 .8	93
34	Photoinduced charge injection and bandgap-engineering of high-specific-surface-area BN nanotubes using a zinc phthalocyanine monolayer. <i>Small</i> , 2007 , 3, 1330-5	11	8

33	DNA-mediated assembly of boron nitride nanotubes. <i>Chemistry - an Asian Journal</i> , 2007 , 2, 1581-5	4.5	65
32	Boron nitride nanotubes: nanoparticles functionalization and junction fabrication. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 530-4	1.3	16
31	Direct Force Measurements and Kinking under Elastic Deformation of Individual Multiwalled Boron Nitride Nanotubes. <i>Nano Letters</i> , 2007 , 7, 2146-2151	11.5	167
30	Enhancing superplasticity of engineering ceramics by introducing BN nanotubes. <i>Nanotechnology</i> , 2007 , 18, 485706	3.4	90
29	Grafting Boron Nitride Nanotubes: From Polymers to Amorphous and Graphitic Carbon. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 1230-1233	3.8	37
28	Chemical peeling and branching of boron nitride nanotubes in dimethyl sulfoxide. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2044-7	16.4	28
27	Chemical Peeling and Branching of Boron Nitride Nanotubes in Dimethyl Sulfoxide. <i>Angewandte Chemie</i> , 2006 , 118, 2098-2101	3.6	7
26	Single-source precursor for chemical vapour deposition of collapsed boron nitride nanotubes. <i>Nanotechnology</i> , 2006 , 17, 5882-5888	3.4	12
25	Boron nitride nanotubes/polystyrene composites. <i>Journal of Materials Research</i> , 2006 , 21, 2794-2800	2.5	126
24	Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization. <i>Physical Review B</i> , 2006 , 74,	3.3	84
23	Tubular carbon nano-/microstructures synthesized from graphite powders by an in situ template process. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 10714-9	3.4	15
22	Purification of boron nitride nanotubes through polymer wrapping. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 1525-8	3.4	70
21	SnO2 nanoparticle-functionalized boron nitride nanotubes. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 8548-50	3.4	39
20	Phonon characteristics and cathodolumininescence of boron nitride nanotubes. <i>Applied Physics Letters</i> , 2005 , 86, 213110	3.4	162
19	Large-scale fabrication of boron nitride nanohorn. <i>Applied Physics Letters</i> , 2005 , 87, 063107	3.4	39
18	Electronic structure of boron nitride cone-shaped nanostructures. <i>Physical Review B</i> , 2005 , 72,	3.3	12
17	Immobilization of proteins on boron nitride nanotubes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17144-5	16.4	171
16	Perfectly dissolved boron nitride nanotubes due to polymer wrapping. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15996-7	16.4	223

LIST OF PUBLICATIONS

15	Characteristics of boron nitride nanotube-polyaniline composites. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7929-32	16.4	136
14	Covalent functionalization: towards soluble multiwalled boron nitride nanotubes. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 7932-5	16.4	145
13	Characteristics of Boron Nitride Nanotube P olyaniline Composites. <i>Angewandte Chemie</i> , 2005 , 117, 814	13 <i>3</i> 86146	5 13
12	Covalent Functionalization: Towards Soluble Multiwalled Boron Nitride Nanotubes. <i>Angewandte Chemie</i> , 2005 , 117, 8146-8149	3.6	13
11	Effective precursor for high yield synthesis of pure BN nanotubes. <i>Solid State Communications</i> , 2005 , 135, 67-70	1.6	243
10	Relieving hydrogen evolution and anodic corrosion of aqueous aluminum batteries with hybrid electrolytes. <i>Journal of Materials Chemistry A</i> ,	13	2
9	Insight on Organic Molecules in Aqueous Zn-Ion Batteries with an Emphasis on the Zn Anode Regulation. <i>Advanced Energy Materials</i> ,2102707	21.8	29
8	Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. <i>Energy and Environmental Science</i> ,	35.4	19
7	Efficient Ammonia Electrosynthesis and Energy Conversion through a Zn-Nitrate Battery by Iron Doping Engineered Nickel Phosphide Catalyst. <i>Advanced Energy Materials</i> ,2103872	21.8	10
6	Cathode Engineering for High Energy Density Aqueous Zn Batteries. Accounts of Materials Research,	7.5	5
5	Vacancy Modulating Co3Sn2S2 Topological Semimetal for Aqueous Zinc-Ion Batteries. <i>Angewandte Chemie</i> ,	3.6	2
4	Highly Thermally/Electrochemically Stable I [/] 3 [Bonded Organic Salts with High I Content for Long-Life Li[12 Batteries. <i>Advanced Energy Materials</i> ,2103648	21.8	Ο
3	MXene chemistry, electrochemistry and energy storage applications. <i>Nature Reviews Chemistry</i> ,	34.6	35
2	Organic materials-based cathode for zinc ion battery. <i>SmartMat</i> ,	22.8	0
1	Electrocatalytic Selenium Redox Reaction for High-Mass-Loading Zinc-Selenium Batteries with Improved Kinetics and Selenium Utilization. <i>Advanced Energy Materials</i> ,2201322	21.8	4