Darko Makovec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2486063/publications.pdf

Version: 2024-02-01

76326 128289 4,772 154 40 60 citations h-index g-index papers 155 155 155 6687 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ferroelectric bismuth-titanate nanoplatelets and nanowires with a new crystal structure. Nanoscale, 2022, 14, 3537-3544.	5.6	5
2	Electro-hydrogenation of biomass-derived levulinic acid to \hat{l}^3 -valerolactone <i>via </i> the magnetic heating of a Ru nanocatalyst. Green Chemistry, 2022, 24, 2788-2794.	9.0	8
3	Hydrothermal formation of bismuth-titanate nanoplatelets and nanowires: the role of metastable polymorphs. CrystEngComm, 2022, 24, 3972-3981.	2.6	3
4	Synthesis of a precursor of D-fagomine by immobilized fructose-6-phosphate aldolase. PLoS ONE, 2021, 16, e0250513.	2.5	3
5	Multi-reaction kinetic modeling for the peroxidase–aldolase cascade synthesis of a D-fagomine precursor. Chemical Engineering Science, 2021, 239, 116602.	3.8	3
6	A new polymorph of strontium hexaferrite stabilized at the nanoscale. CrystEngComm, 2020, 22, 7113-7122.	2.6	6
7	A hierarchical Ru-bearing alumina/magnetic iron-oxide composite for the magnetically heated hydrogenation of furfural. Green Chemistry, 2020, 22, 5978-5983.	9.0	22
8	Magnetic Heating of Nanoparticles Applied in the Synthesis of a Magnetically Recyclable Hydrogenation Nanocatalyst. Nanomaterials, 2020, 10, 1142.	4.1	11
9	Magneto-mechanical actuation of barium-hexaferrite nanoplatelets for the disruption of phospholipid membranes. Journal of Colloid and Interface Science, 2020, 579, 508-519.	9.4	15
10	Formation of Fe(III)-phosphonate Coatings on Barium Hexaferrite Nanoplatelets for Porous Nanomagnets. ACS Omega, 2020, 5, 14086-14095.	3.5	9
11	Surface-induced reversal of a phase transformation for the synthesis of $\hat{l}\mu$ -Fe2O3 nanoparticles with high coercivity. Acta Materialia, 2020, 188, 16-22.	7.9	33
12	Evolution of the microstructure during the early stages of sintering barium hexaferrite nanoplatelets. Journal of the European Ceramic Society, 2019, 39, 4831-4841.	5.7	10
13	Magnetic Nanoplatelets for High Contrast Cardiovascular Imaging by Magnetically Modulated Optical Coherence Tomography. ChemPhotoChem, 2019, 3, 503-503.	3.0	0
14	Ex-Solution Synthesis of Sub-5-nm FeO _{<i>x</i>} Nanoparticles on Mesoporous Hollow N,O-Doped Carbon Nanoshells for Electrocatalytic Oxygen Reduction. ACS Applied Nano Materials, 2019, 2, 6092-6097.	5.0	30
15	Magnetic Nanoplatelets for High Contrast Cardiovascular Imaging by Magnetically Modulated Optical Coherence Tomography. ChemPhotoChem, 2019, 3, 529-539.	3.0	16
16	A functionalization strategy for the dispersion of permanently magnetic barium-hexaferrite nanoplatelets in complex biological media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 573, 119-127.	4.7	15
17	Incorporation of Sc into the structure of barium-hexaferrite nanoplatelets and its extraordinary finite-size effect on the magnetic properties. Acta Materialia, 2019, 172, 84-91.	7.9	24
18	The first comprehensive safety study of Magn \tilde{A} ©li phase titanium suboxides reveals no acute environmental hazard. Environmental Science: Nano, 2019, 6, 1131-1139.	4.3	6

#	Article	IF	CITATIONS
19	Ultrasmall iron oxide nanoparticles: Magnetic and NMR relaxometric properties. Current Applied Physics, 2018, 18, 141-149.	2.4	20
20	Catalytic Hydrogenation, Hydrodeoxygenation, and Hydrocracking Processes of a Lignin Monomer Model Compound Eugenol over Magnetic Ru/C–Fe2O3 and Mechanistic Reaction Microkinetics. Catalysts, 2018, 8, 425.	3 . 5	34
21	Magnetically separable Ru-based nano-catalyst for the hydrogenation/hydro-deoxygenation of lignin-derived platform chemicals. Materials Research Letters, 2018, 6, 426-431.	8.7	26
22	Nanocomposites comprised of homogeneously dispersed magnetic iron-oxide nanoparticles and poly(methyl methacrylate). Beilstein Journal of Nanotechnology, 2018, 9, 1613-1622.	2.8	11
23	Discrete evolution of the crystal structure during the growth of Ba-hexaferrite nanoplatelets. Nanoscale, 2018, 10, 14480-14491.	5.6	27
24	Hybrid chloroperoxidaseâ€magnetic nanoparticle clusters: effect of functionalization on biocatalyst performance. Journal of Chemical Technology and Biotechnology, 2018, 93, 233-245.	3.2	12
25	Sonochemically-fabricated Ga@C-dots@Ga nanoparticle-aided neural growth. Journal of Materials Chemistry B, 2017, 5, 1371-1379.	5.8	37
26	Titanium doping of BiFeO ₃ ceramics and identification of minor phases by Raman spectroscopy. Journal of Raman Spectroscopy, 2017, 48, 884-890.	2.5	8
27	Harmful at non-cytotoxic concentrations: SiO ₂ -SPIONs affect surfactant metabolism and lamellar body biogenesis in A549 human alveolar epithelial cells. Nanotoxicology, 2017, 11, 419-429.	3.0	26
28	Amphiphilic coatings for the protection of upconverting nanoparticles against dissolution in aqueous media. Dalton Transactions, 2017, 46, 6975-6984.	3.3	35
29	Novel Ba-hexaferrite structural variations stabilized on the nanoscale as building blocks for epitaxial bi-magnetic hard/soft sandwiched maghemite/hexaferrite/maghemite nanoplatelets with out-of-plane easy axis and enhanced magnetization. Nanoscale, 2017, 9, 17551-17560.	5.6	16
30	Synthesis of metastable hard-magnetic $\hat{l}\mu$ -Fe ₂ 0 ₃ nanoparticles from silica-coated akaganeite nanorods. Nanoscale, 2017, 9, 10579-10584.	5 . 6	45
31	Hydrothermal growth of iron oxide NPs with a uniform size distribution for magnetically induced hyperthermia: Structural, colloidal and magnetic properties. Journal of Alloys and Compounds, 2017, 694, 261-271.	5 . 5	50
32	Design and Fabrication of Magnetically Responsive Nanocarriers for Drug Delivery. Current Medicinal Chemistry, 2017, 24, 454-469.	2.4	64
33	Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid. Journal of Magnetism and Magnetic Materials, 2016, 413, 65-75.	2.3	16
34	Adsorption of Amino Acids, Aspartic Acid, and Lysine onto Iron-Oxide Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 14372-14381.	3.1	37
35	Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	12
36	Application of magnetoâ€responsive Oenococcus oeni for the malolactic fermentation in wine. Biochemical Engineering Journal, 2016, 110, 134-142.	3.6	7

#	Article	IF	Citations
37	Proteomic analyses of early response of unicellular eukaryotic microorganism <i>Tetrahymena thermophila</i> exposed to TiO ₂ particles. Nanotoxicology, 2016, 10, 542-556.	3.0	15
38	Gd2O3 nanoparticles stabilized by hydrothermally modified dextrose for positive contrast magnetic resonance imaging. Journal of Magnetism and Magnetic Materials, 2016, 403, 118-126.	2.3	21
39	Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes. International Journal of Nanomedicine, 2015, 10, 6089.	6.7	7
40	Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite. Nanoscale, 2015, 7, 2688-2697.	5.6	30
41	The formation of magnetic carboxymethyl-dextrane-coated iron-oxide nanoparticles using precipitation from an aqueous solution. Materials Chemistry and Physics, 2015, 153, 376-383.	4.0	5
42	Synthesis and characterization of Ni–Cu alloy nanoparticles with a tunable Curie temperature. Journal of Alloys and Compounds, 2015, 648, 53-58.	5.5	22
43	Monodispersed water-soluble maghemite nanoparticles stabilized by a polymerized bilayer of 10-undecenoic acid. Materials Letters, 2015, 157, 239-242.	2.6	3
44	Complex Impedance Analyses of Ba ₁₋ <i>_x<ii>sub></ii></i> _x _x </td <td>> ОiΤ&.iф> <</td> <td>sub>3</td>	> ОiΤ& .i ф> <	sub>3
45	Effect of carbon black nanomaterial on biological membranes revealed by shape of human erythrocytes, platelets and phospholipid vesicles. Journal of Nanobiotechnology, 2015, 13, 28.	9.1	8
46	Sperm exposure to carbon-based nanomaterials causes abnormalities in early development of purple sea urchin (Paracentrotus lividus). Aquatic Toxicology, 2015, 163, 158-166.	4.0	35
47	High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae. Aquatic Toxicology, 2015, 163, 121-129.	4.0	83
48	Magnetic Assembly of Superparamagnetic Iron Oxide Nanoparticle Clusters into Nanochains and Nanobundles. ACS Nano, 2015, 9, 9700-9707.	14.6	154
49	Comparative study of serum protein binding to three different carbon-based nanomaterials. Carbon, 2015, 95, 560-572.	10.3	55
50	Bioavailability of cobalt and iron from citric-acid-adsorbed CoFe2O4 nanoparticles in the terrestrial isopod Porcellio scaber. Science of the Total Environment, 2015, 508, 76-84.	8.0	20
51	Controlled heteroaggregation of two types of nanoparticles in an aqueous suspension. Journal of Colloid and Interface Science, 2015, 438, 235-243.	9.4	35
52	Influence of the Synthesis Parameters on the Properties of NaYF4:Yb3+,Tm3+ Nanoparticles. Acta Chimica Slovenica, 2015, 62, 789-795.	0.6	4
53	The Lowâ€Temperature Cosintering of Cobalt Ferrite and Lead Zirconate Titanate Ceramic Composites. Journal of the American Ceramic Society, 2014, 97, 74-80.	3.8	4
54	Effects of magnetic cobalt ferrite nanoparticles on biological and artificial lipid membranes. International Journal of Nanomedicine, 2014, 9, 1559.	6.7	41

#	Article	IF	CITATIONS
55	A surface-chemistry study of barium ferrite nanoplates with DBSa-modified surfaces. Applied Surface Science, 2014, 305, 366-374.	6.1	9
56	A new method for the rapid separation of magnetized yeast in sparkling wine. Biochemical Engineering Journal, 2014, 88, 77-84.	3.6	41
57	Magnetic properties of ultrasmall iron-oxide nanoparticles. Journal of Alloys and Compounds, 2014, 595, 153-157.	5 . 5	16
58	The synthesis and characterization of nickel–copper alloy nanoparticles with a narrow size distribution using sol–gel synthesis. Materials Letters, 2014, 124, 39-42.	2.6	33
59	Oxidative potential of ultravioletâ€A irradiated or nonirradiated suspensions of titanium dioxide or silicon dioxide nanoparticles on <i>Allium cepa</i> roots. Environmental Toxicology and Chemistry, 2014, 33, 858-867.	4.3	22
60	The chemically directed assembly of nanoparticle clusters from superparamagnetic iron-oxide nanoparticles. RSC Advances, 2014, 4, 13167.	3.6	28
61	Magnetic properties of novel superparamagnetic iron oxide nanoclusters and their peculiarity under annealing treatment. Applied Surface Science, 2014, 322, 255-264.	6.1	149
62	Synthesis and characterization of Mg1+xFe2 \hat{a}^2 2xTixO4 nanoparticles with an adjustable Curie point. Journal of Magnetism and Magnetic Materials, 2014, 350, 124-128.	2.3	36
63	The magnetic and colloidal properties of CoFe2O4 nanoparticles synthesized by co-precipitation. Acta Chimica Slovenica, 2014, 61, 488-96.	0.6	2
64	Targeting EGFR-overexpressed A431 cells with EGF-labeled silica-coated magnetic nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	21
65	The synthesis and characterization of copper–nickel alloy nanoparticles with a therapeutic Curie point using the microemulsion method. Journal of Alloys and Compounds, 2013, 576, 220-226.	5 . 5	25
66	Synthesis of hematite and iron oxyhydroxide nanocrystals by precipitation of Fe3+ ions inside oleic acid micelles. Ceramics International, 2013, 39, 5659-5665.	4.8	9
67	Magnetic properties and magnetic relaxation in a suspension of CoFe2O4 nanoparticles. Journal of Applied Physics, 2013, 113, 234311.	2.5	5
68	Effects of surface curvature and surface characteristics of carbon-based nanomaterials on the adsorption and activity of acetylcholinesterase. Carbon, 2013, 62, 222-232.	10.3	39
69	Effect of engineered TiO2and ZnO nanoparticles on erythrocytes, platelet-rich plasma and giant unilamelar phospholipid vesicles. BMC Veterinary Research, 2013, 9, 7.	1.9	28
70	Cellular Internalization of Dissolved Cobalt Ions from Ingested CoFe ₂ O ₄ Nanoparticles: In Vivo Experimental Evidence. Environmental Science & Environmental Evidence & Environmental Science & Environmental Science & Environmental Evidence & Environmental Evide	10.0	51
71	Hydrothermal synthesis of La1â^'XSrXMnO3 dendrites. Journal of Crystal Growth, 2013, 375, 78-83.	1.5	10
72	Gold nanoparticles as physiological markers of urine internalization into urothelial cells in vivo. International Journal of Nanomedicine, 2013, 8, 3945.	6.7	11

#	Article	IF	Citations
73	Structural properties of ultrafine Ba-hexaferrite nanoparticles. Journal of Solid State Chemistry, 2012, 196, 63-71.	2.9	39
74	Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	59
75	Low-temperature synthesis of magnetically recoverable, superparamagnetic, photocatalytic, nanocomposite particles. Materials Chemistry and Physics, 2012, 136, 230-240.	4.0	5
76	Experimental evidence for the interaction of C-60 fullerene with lipid vesicle membranes. Carbon, 2012, 50, 1170-1178.	10.3	35
77	Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis. Materials Chemistry and Physics, 2012, 133, 515-522.	4.0	57
78	Synthesis and Characterization of Silica-Coated Cu $\{1-\{m\ x\}\}$ Ni $\{m\ x\}$ Nanoparticles. IEEE Transactions on Magnetics, 2012, 48, 1344-1347.	2.1	13
79	Anisotropic microrheological properties of chain-forming magnetic fluids. Soft Matter, 2011, 7, 125-131.	2.7	19
80	The hydrothermal synthesis of super-paramagnetic barium hexaferrite particles. Materials Chemistry and Physics, 2011, 127, 415-419.	4.0	58
81	Magnetically recoverable photocatalytic nanocomposite particles for water treatment. Materials Chemistry and Physics, 2011, 129, 83-89.	4.0	44
82	Synthesis and characterization of maghemite nanosheets. Materials Letters, 2011, 65, 439-441.	2.6	10
83	Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups. Journal of Nanoparticle Research, 2011, 13, 2829-2841.	1.9	110
84	The structure of compositionally constrained zinc-ferrite spinel nanoparticles. Journal of Nanoparticle Research, 2011, 13, 1781-1790.	1.9	35
85	Atomic absorption background of Ba in EXAFS analysis of BaFe12O19nanoparticles. Journal of Synchrotron Radiation, 2011, 18, 557-563.	2.4	3
86	Magnetic properties of Mn-oxide nanoparticles dispersed in an amorphous SiO2 matrix. Journal of Magnetism and Magnetic Materials, 2011, 323, 805-812.	2.3	14
87	Synthesis of copper–nickel nanoparticles prepared by mechanical milling for use in magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2011, 323, 2254-2258.	2.3	85
88	Colloidal stability of oleic- and ricinoleic-acid-coated magnetic nanoparticles in organic solvents. Journal of Colloid and Interface Science, 2011, 354, 498-505.	9.4	56
89	Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles. Journal of Nanoparticle Research, 2010, 12, 1263-1273.	1.9	113
90	Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity. Journal of Magnetism and Magnetic Materials, 2010, 322, 1847-1853.	2.3	107

#	Article	IF	Citations
91	Magnetic properties of Co2.4Al0.6O4/SiO2 nanocomposite obtained via sol–gel method. Journal of Magnetism and Magnetic Materials, 2010, 322, 3271-3277.	2.3	1
92	Superparamagnetic nanocomposite particles synthesized using the mini-emulsion technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366, 113-119.	4.7	20
93	Structure of Spinelâ€Type Phases in the ZnO–Mn <i>>_x</i> >O <i>_y</i> System. Journal of the American Ceramic Society, 2010, 93, 590-595.	3.8	10
94	The Concept of a Lowâ€Temperature Synthesis for Superparamagnetic BaFe ₁₂ O ₁₉ Particles. Journal of the American Ceramic Society, 2010, 93, 1602-1607.	3.8	26
95	Preparation of a Superparamagnetic Nanocomposite with a High Content of Magnetic Iron Oxide in a PMMA Matrix by Precipitation Polymerization. Composite Interfaces, 2010, 17, 137-141.	2.3	4
96	Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. Journal of Nanoparticle Research, 2009, 11, 1145-1158.	1.9	81
97	The Preparation of Barium Hexaferrite Coatings Using HVOF. Journal of the American Ceramic Society, 2009, 92, 818-824.	3.8	5
98	Functionalization of magnetic nanoparticles with 3-aminopropyl silane. Journal of Magnetism and Magnetic Materials, 2009, 321, 1346-1350.	2.3	112
99	Incorporation and release of drug into/from superparamagnetic iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2009, 321, 3187-3192.	2.3	28
100	Electrochemical activity of Li2FeTiO4 and Li2MnTiO4 as potential active materials for Li ion batteries: A comparison with Li2NiTiO4. Journal of Power Sources, 2009, 189, 81-88.	7.8	50
101	Hydrothermal synthesis of ultrafine barium hexaferrite nanoparticles and the preparation of their stable suspensions. Nanotechnology, 2009, 20, 315605.	2.6	87
102	Influence of crystal structure on the Coll diffusion behavior in the Zn1â^'xCoxO system. Journal of Solid State Chemistry, 2008, 181, 2456-2461.	2.9	13
103	Non-stoichiometric zinc-ferrite spinel nanoparticles. Journal of Nanoparticle Research, 2008, 10, 131-141.	1.9	45
104	Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 867, 160-164.	2.3	28
105	Mn3â^'Zn O4 spinel phases in the Zn–Mn–O system. Acta Materialia, 2008, 56, 4028-4035.	7.9	25
106	TiO2 as a sintering additive for KNbO3 ceramics. Ceramics International, 2008, 34, 89-94.	4.8	12
107	Sonochemically assisted synthesis of zinc-doped maghemite. Ultrasonics Sonochemistry, 2008, 15, 791-798.	8.2	11
108	Superparamagnetic nanocomposites of iron oxide in a polymethyl methacrylate matrix synthesized by in situ polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 49-55.	4.7	42

#	Article	IF	Citations
109	Preparation and properties of water-based magnetic fluids. Journal of Physics Condensed Matter, 2008, 20, 204101.	1.8	74
110	Synthesis of Plate-like Spinel Particles and Spinel-Hexaferrite Intergrowth Nanocomposite Particles Using the Hydrothermal Decomposition of Ba-Hexaferrite. Crystal Growth and Design, 2008, 8, 2182-2186.	3.0	11
111	Preparation and Study of Zinc Ferrite Nanoparticles with a High Magnetization. Materials and Manufacturing Processes, 2008, 23, 603-606.	4.7	20
112	NANOSTRUCTURED ZrO2 POWDER SYNTHESIZED BY ULTRASONIC SPRAY PYROLYSIS. Surface Review and Letters, 2007, 14, 915-919.	1.1	3
113	Diffusion and reactivity of ZnO–MnOx system. Journal of Solid State Chemistry, 2007, 180, 2459-2464.	2.9	45
114	Phase evolution of Zn1â^'xMnxO system synthesized via oxalate precursors. Journal of the European Ceramic Society, 2007, 27, 3915-3918.	5.7	26
115	Structural and magnetic characterization of LiMn1.825Cr0.175O4 spinel obtained by ultrasonic spray pyrolysis. Materials Research Bulletin, 2007, 42, 515-522.	5.2	8
116	Crystal-structure and MÃ \P ssbauer studies of Li1.746Nd4.494FeO9.493. Journal of Solid State Chemistry, 2007, 180, 2-7.	2.9	5
117	The Solid Solubility of Holmium in BaTiO3Under Reducing Conditions. Journal of the American Ceramic Society, 2006, 89, 3281-3284.	3.8	17
118	The synthesis of iron–nickel alloy nanoparticles using a reverse micelle technique. Journal of Magnetism and Magnetic Materials, 2006, 307, 250-256.	2.3	48
119	A high-temperature structure for Ta2O5 with modulations by TiO2 substitution. Journal of Solid State Chemistry, 2006, 179, 1782-1791.	2.9	21
120	Grain boundary reoxidation of donor-doped barium titanate ceramics. Journal of the European Ceramic Society, 2006, 26, 2899-2907.	5.7	69
121	Influence of microstructure and preparation methods on the magneto-crystalline structure and magnetic properties of submicron barium hexaferrite powders. Journal of Materials Research, 2006, 21, 2606-2610.	2.6	4
122	Syntheses of Ferrite Nanoparticles Using Ultrasound Irradiation. Materials Science Forum, 2006, 518, 73-78.	0.3	2
123	Redox processes in highly yttrium-doped barium titanate. Journal of Solid State Chemistry, 2005, 178, 1367-1375.	2.9	9
124	The synthesis of spinel–ferrite nanoparticles using precipitation in microemulsions for ferrofluid applications. Journal of Magnetism and Magnetic Materials, 2005, 289, 32-35.	2.3	86
125	Chemical synthesis of KNbO3 and KNbO3–BaTiO3 ceramics. Journal of the European Ceramic Society, 2005, 25, 2713-2717.	5.7	20
126	Subsolidus phase equilibria and the Li5Nd4FeO10 phase in the Li2O–Nd2O3–Fe2O3 system. Materials Research Bulletin, 2005, 40, 1856-1863.	5. 2	3

#	Article	IF	Citations
127	Synthesis of Lanthanum-Strontium Manganites by a Hydroxide-Precursor Co-Precipitation Method in Solution and in Reverse Micellar Microemulsion. Materials Science Forum, 2005, 494, 155-160.	0.3	16
128	The Synthesis and Properties of Magnetic Nanoparticles. Materials Science Forum, 2005, 494, 129-136.	0.3	11
129	The Preparation of Spinel Ferrite Nanoparticles Using Precipitation in Water-in-Oil Microemulsions. Journal of Metastable and Nanocrystalline Materials, 2005, 23, 251-254.	0.1	6
130	The Synthesis of Silica-Coated Permalloy Nanoparticles Using a Water-in-Oil Microemulsion. Materials Science Forum, 2005, 494, 161-166.	0.3	1
131	Formation of Nanoneedles and Nanoplatelets of KNbO3Perovskite during Templated Crystallization of the Precursor Gel. Chemistry of Materials, 2005, 17, 2953-2958.	6.7	56
132	The preparation of MnZn-ferrite nanoparticles in water–CTAB–hexanol microemulsions. Nanotechnology, 2004, 15, S160-S166.	2.6	46
133	Solid Solubility of Holmium, Yttrium, and Dysprosium in BaTiO3. Journal of the American Ceramic Society, 2004, 87, 1324-1329.	3.8	141
134	Formation of U-type hexaferrites. Journal of Materials Research, 2004, 19, 2462-2470.	2.6	52
135	Preparation of MnZn-ferrite with microemulsion technique. Journal of the European Ceramic Society, 2004, 24, 959-962.	5.7	82
136	The preparation of MnZn-ferrite nanoparticles in a water/CTAB, 1-butanol/1-hexanol reverse microemulsion. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3521-3524.	0.8	18
137	Mechanochemical synthesis of nanostructured fluorapatite/fluorhydroxyapatite and carbonated fluorapatite/fluorhydroxyapatite. Journal of Solid State Chemistry, 2004, 177, 2565-2574.	2.9	106
138	Fluorine as a Donor Dopant in Barium Titanate Ceramics. Journal of the American Ceramic Society, 2003, 86, 495-500.	3.8	16
139	Use of the Retarded Solutionâ€Reprecipitation Process to Attain a Higher Initial Permeability in MnZn Ferrites. Journal of the American Ceramic Society, 2003, 86, 1601-1604.	3.8	4
140	Positive temperature coefficient of resistivity effect in Pb-doped KnbO ₃ . Journal of Materials Research, 2002, 17, 2989-2992.	2.6	4
141	Quantitative WDXS Microanalysis of Bismuth-Based BaBi 4 Ti 4 O 15 Perovskites Doped with Nb and Fe. Mikrochimica Acta, 2002, 139, 159-163.	5.0	4
142	Electrical properties of donor- and acceptor-doped BaBi4Ti4O15. Journal of the European Ceramic Society, 2001, 21, 1327-1331.	5.7	63
143	Electrical properties of undoped BaTiO3 ceramics annealed in a fluorine containing atmosphere. Journal of the European Ceramic Society, 2001, 21, 1899-1903.	5.7	9
144	Sintering of MnZn-ferrite powders prepared by hydrothermal reactions between oxides. Journal of the European Ceramic Society, 2001, 21, 1945-1949.	5.7	16

#	Article	IF	CITATION
145	Incorporation of Aliovalent Dopants into the Bismuthâ€Layered Perovskiteâ€Like Structure of BaBi ₄ Ti ₄ O ₁₅ . Journal of the American Ceramic Society, 2001, 84, 2702-2704.	3.8	26
146	EPMA and Microstructural Characterization of Yttrium Doped BaTiO 3 Ceramics. Mikrochimica Acta, 2000, 132, 383-386.	5.0	4
147	Subsolidus phase equilibria in the NiO–CeO2 and La2O3–CeO2–Fe2O3 systems. Materials Research Bulletin, 1998, 33, 1175-1183.	5.2	44
148	Influence of the Addition of Bi ₂ O ₃ on the Grain Growth and Magnetic Permeability of MnZn Ferrites. Journal of the American Ceramic Society, 1998, 81, 2841-2848.	3.8	88
149	Internal Oxidation of Ce ³⁺ â€BaTiO ₃ Solid Solutions. Journal of the American Ceramic Society, 1997, 80, 45-52.	3.8	37
150	New crystal structure in the BaO-Ce2O3-TiO2 system. Materials Research Bulletin, 1997, 32, 1657-1672.	5.2	3
151	Solid Solubility of Cerium in BaTiO3. Journal of Solid State Chemistry, 1996, 123, 30-38.	2.9	85
152	Defect Structure and Phase Relations of Highly Lanthanum-Doped Barium Titanate. Journal of the American Ceramic Society, 1995, 78, 2193-2197.	3.8	67
153	Extended Defects in ZnO Ceramics Containing Bi4Ti3O12 Additive. Journal of the American Ceramic Society, 1994, 77, 1202-1208.	3.8	18
154	Sintering and microstructural development of metal oxide varistor ceramics. Materials Research Bulletin, 1993, 28, 803-811.	5.2	35