Tatsuya Tsukuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2486046/publications.pdf

Version: 2024-02-01

249 papers

18,778 citations

65 h-index 132 g-index

269 all docs

269 docs citations

times ranked

269

11106 citing authors

#	Article	IF	CITATIONS
1	A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
2	A Faceâ€toâ€Face Dimer of Au ₃ Superatoms Supported by Interlocked Tridentate Scaffolds Formed in Au ₁₈ S ₂ (SR) ₁₂ . Angewandte Chemie, 2022, 134, .	1.6	2
3	A Faceâ€toâ€Face Dimer of Au ₃ Superatoms Supported by Interlocked Tridentate Scaffolds Formed in Au ₁₈ S ₂ (SR) ₁₂ . Angewandte Chemie - International Edition, 2022, 61, e202113275.	7.2	8
4	Synthesis of active, robust and cationic Au ₂₅ cluster catalysts on double metal hydroxide by long-term oxidative aging of Au ₂₅ (SR) ₁₈ . Nanoscale, 2022, 14, 3031-3039.	2.8	10
5	Synthesis and Characterization of Enantiopure Chiral Bis NHC-Stabilized Edge-Shared Au ₁₀ Nanocluster with Unique Prolate Shape. Journal of the American Chemical Society, 2022, 144, 2056-2061.	6.6	44
6	Controlled Synthesis of Diphosphine-Protected Gold Cluster Cations Using Magnetron Sputtering Method. Molecules, 2022, 27, 1330.	1.7	0
7	NHC-Stabilized Au ₁₀ Nanoclusters and Their Conversion to Au ₂₅ Nanoclusters. Jacs Au, 2022, 2, 875-885.	3.6	22
8	From atom-precise nanoclusters to superatom materials. Journal of Chemical Physics, 2022, 156, 170401.	1.2	11
9	N-Heterocyclic Carbene-Stabilized Hydrido Au ₂₄ Nanoclusters: Synthesis, Structure, and Electrocatalytic Reduction of CO ₂ . Journal of the American Chemical Society, 2022, 144, 9000-9006.	6.6	74
10	Dopingâ€Mediated Energyâ€Level Engineering of M@Au ₁₂ Superatoms (M=Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angewandte Chemie, 2022, 134, .	1.6	1
11	Polymer-Stabilized Au ₃₈ Cluster: Atomically Precise Synthesis by Digestive Ripening and Characterization of the Atomic Structure and Oxidation Catalysis. ACS Catalysis, 2022, 12, 6550-6558.	5.5	5
12	Dopingâ€Mediated Energyâ€Level Engineering of M@Au ₁₂ Superatoms (M=Pd, Pt, Rh, Ir) for Efficient Photoluminescence and Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	44
13	Electron Affinities of Ligated Icosahedral M ₁₃ Superatoms Revisited by Gas-Phase Anion Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 5049-5055.	2.1	4
14	Temperature effect on photoelectron spectra of AuCO2â€":Relative stability between physisorbed and chemisorbed isomers. Chemical Physics Letters, 2022, , 139823.	1.2	O
15	Inside Cover: Dopingâ€Mediated Energyâ€Level Engineering of M@Au ₁₂ Superatoms (M=Pd, Pt,) To Angewandte Chemie - International Edition, 2022, 61, .	j ETQq1 1 7.2	0.784314 rgl 0
16	Innentitelbild: Dopingâ€Mediated Energyâ€Level Engineering of M@Au ₁₂ Superatoms (M=Pd, Pt,) Chemie, 2022, 134, .	Tj ETQq0 (1.6	0 0 rgBT /Over 0
17	Toward Controlling the Electronic Structures of Chemically Modified Superatoms of Gold and Silver. Small, 2021, 17, e2001439.	5.2	64
18	Controlled Dimerization and Bonding Scheme of Icosahedral M@Au ₁₂ (M=Pd, Pt) Superatoms. Angewandte Chemie - International Edition, 2021, 60, 645-649.	7.2	43

#	Article	IF	CITATIONS
19	Controlled Dimerization and Bonding Scheme of Icosahedral M@Au ₁₂ (M=Pd, Pt) Superatoms. Angewandte Chemie, 2021, 133, 655-659.	1.6	8
20	Identification of hydrogen species on Pt/Al ₂ O ₃ by <i>in situ</i> inelastic neutron scattering and their reactivity with ethylene. Catalysis Science and Technology, 2021, 11, 116-123.	2.1	6
21	Few-nm-sized, phase-pure Au ₅ Sn intermetallic nanoparticles: synthesis and characterization. Dalton Transactions, 2021, 50, 5177-5183.	1.6	5
22	Chemically Modified Gold/Silver Superatoms as Artificial Elements at Nanoscale: Design Principles and Synthesis Challenges. Journal of the American Chemical Society, 2021, 143, 1683-1698.	6.6	148
23	The Journal of Physical Chemistry C Virtual Special Issue on Metal Clusters, Nanoparticles, and the Physical Chemistry of Catalysis. Journal of Physical Chemistry C, 2021, 125, 4927-4929.	1.5	2
24	Exploring Novel Catalysis Using Polymer-Stabilized Metal Clusters. Bulletin of the Chemical Society of Japan, 2021, 94, 1036-1044.	2.0	12
25	Gas-phase studies of chemically synthesized Au and Ag clusters. Journal of Chemical Physics, 2021, 154, 140901.	1.2	17
26	Ligand Effects on the Structures of [Au ₂₃ L ₆ (C≡CPh) ₉] ²⁺ (L = N-Heterocyclic Carbene vs) Tj 9930-9936.	j et <u>o</u> g0 0	0 rgBT /Overl
27	New Magic Au ₂₄ Cluster Stabilized by PVP: Selective Formation, Atomic Structure, and Oxidation Catalysis. Jacs Au, 2021, 1, 660-668.	3.6	21
28	Photoluminescence of Doped Superatoms M@Au ₁₂ (M = Ru, Rh, Ir) Homoleptically Capped by (Ph ₂)PCH ₂ P(Ph _{>2}): Efficient Room-Temperature Phosphorescence from Ru@Au ₁₂ . Journal of the American Chemical Society, 2021, 143, 10560-10564.	6.6	57
29	Chemically Modified Superatoms: Toward Controlling the Electronic Structures of Chemically Modified Superatoms of Gold and Silver (Small 27/2021). Small, 2021, 17, 2170136.	5.2	2
30	Effects of <scp>Ï€â€Electron</scp> Systems on Optical Activity of Au ₁₁ Clusters Protected by Chiral Diphosphines. Bulletin of the Korean Chemical Society, 2021, 42, 1265-1268.	1.0	7
31	Atomically-ordered Trimetallic Superatoms $M@Au < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub > 6 < sub$	0.7	4
32	Synergistic Effect in Ir- or Pt-Doped Ru Nanoparticles: Catalytic Hydrogenation of Carbonyl Compounds under Ambient Temperature and H ₂ Pressure. ACS Catalysis, 2021, 11, 10502-10507.	5 . 5	5
33	Chemical transformations of [MAu8(PPh3)8]2 + (M = Pt, Pd) and [Au9(PPh3)8]3 + in methanol induced by irradiation of atmospheric pressure plasma. Journal of Chemical Physics, 2021, 155, 124312.	1.2	2
34	Critical Role of CF ₃ Groups in the Electronic Stabilization of [PdAu ₂₄ (C≡CC ₆ H ₃ (CF ₃) ₂) ₁₈ as Revealed by Gas-Phase Anion Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 10417-10421.	·] ^{2â}	€"ൃ/sup>
35	Ligand Effects on the Hydrogen Evolution Reaction Catalyzed by Au ₁₃ and Pt@Au ₁₂ : Alkynyl vs Thiolate. Journal of Physical Chemistry C, 2021, 125, 23226-23230.	1.5	22
36	Decorating an anisotropic Au ₁₃ core with dendron thiolates: enhancement of optical absorption and photoluminescence. Chemical Communications, 2021, 57, 12159-12162.	2.2	3

#	Article	IF	CITATIONS
37	xTunes: A new XAS processing tool for detailed and on-the-fly analysis. Radiation Physics and Chemistry, 2020, 175, 108270.	1.4	36
38	Synergistic Effects of Pt and Cd Codoping to Icosahedral Au _{13} Superatoms. Journal of Physical Chemistry C, 2020, 124, 23923-23929.	1.5	30
39	Sequential growth of iridium cluster anions based on simple cubic packing. Physical Chemistry Chemical Physics, 2020, 22, 17842-17846.	1.3	3
40	Collision-Induced Reductive Elimination of 1,3-Diynes from [MAu ₂₄ (C≡CR) ₁₈] ^{2–} (M = Pd, Pt) Yielding Clusters of Superatoms. Journal of Physical Chemistry C, 2020, 124, 19119-19125.	1.5	11
41	Au ₃ Si ₄ [–] and Au ₄ Si ₄ : Electronically Equivalent but Different Polarity Superatoms. Journal of Physical Chemistry A, 2020, 124, 7710-7715.	1.1	2
42	Electron-Rich Gold Clusters Stabilized by Poly(vinylpyridines) as Robust and Active Oxidation Catalysts. Langmuir, 2020, 36, 7844-7849.	1.6	13
43	Understanding Doping Effects on Electronic Structures of Gold Superatoms: A Case Study of Diphosphine-Protected M@Au ₁₂ (M = Au, Pt, Ir). Inorganic Chemistry, 2020, 59, 17889-17895.	1.9	42
44	Electron Microscopic Observation of an Icosahedral Au ₁₃ Core in Au ₂₅ (SePh) ₁₈ and Reversible Isomerization between Icosahedral and Face-Centered Cubic Cores in Au ₁₄₄ (SC ₂ H ₄ Ph) ₆₀ . Journal of Physical Chemistry C, 2020, 124, 6907-6912.	1.5	17
45	CdTe quantum dots modified electrodes ITO-(Polycation/QDs) for carbon dioxide reduction to methanol. Applied Surface Science, 2020, 509, 145386.	3.1	8
46	Base Catalytic Activity of [Nb ₁₀ O ₂₈] ^{6–} : Effect of Countercations. Journal of Physical Chemistry C, 2020, 124, 10975-10980.	1.5	16
47	Electron Binding in a Superatom with a Repulsive Coulomb Barrier: The Case of [Ag ₄₄ (SC ₆ H ₃ F ₂) ₃₀] ^{4–} in the Gas Phase. Journal of Physical Chemistry Letters, 2020, 11, 3069-3074.	2.1	20
48	Ligand-protected gold/silver superatoms: current status and emerging trends. Chemical Science, 2020, 11, 12233-12248.	3.7	69
49	[PtAu _{24< sub>(SC_{2< sub>H_{4< sub>Ph)_{18< sub>]^{â^'< sup> via Spontaneous Electron Proportionation between [PtAu_{24< sub>(SC_{2< sub>H_{4< sub>Ph)_{18< sub>]^{2â€"< sup> and [PtAu_{24< sub>(SC_{2< sub>H_{4< sub>Ph)_{18< sub>]^{0< sup> lournal of the}}}}}}}}}}}}}}}	6.6	62
50	American Chemical Society, 2019, 141, 14048-14051. Elucidating the Doping Effect on the Electronic Structure of Thiolateâ€Protected Silver Superatoms by Photoelectron Spectroscopy. Angewandte Chemie, 2019, 131, 11763-11767.	1.6	5
51	Titelbild: Elucidating the Doping Effect on the Electronic Structure of Thiolateâ€Protected Silver Superatoms by Photoelectron Spectroscopy (Angew. Chem. 34/2019). Angewandte Chemie, 2019, 131, 11667-11667.	1.6	O
52	Ultrathin Gold Nanowires and Nanorods. Chemistry Letters, 2019, 48, 906-915.	0.7	23
53	Characterization of chemically modified gold and silver clusters in gas phase. Physical Chemistry Chemical Physics, 2019, 21, 17463-17474.	1.3	29
54	Reductive Activation of Small Molecules by Anionic Coinage Metal Atoms and Clusters in the Gas Phase. Chemistry - an Asian Journal, 2019, 14, 3763-3772.	1.7	9

#	Article	IF	CITATIONS
55	Alkynyl-Protected Au ₂₂ (C≡CR) ₁₈ Clusters Featuring New Interfacial Motifs and R-Dependent Photoluminescence. Journal of Physical Chemistry Letters, 2019, 10, 6892-6896.	2.1	81
56	Robust, Highly Luminescent Au ₁₃ Superatoms Protected by N-Heterocyclic Carbenes. Journal of the American Chemical Society, 2019, 141, 14997-15002.	6.6	185
57	Structures of Chemically Modified Superatoms. Molecular Science, 2019, 13, A0108.	0.2	1
58	Efficient and Selective Conversion of Phosphine-Protected (MAu ₈) ²⁺ (M = Pd,) Tj ETQq (MAu ₁₂) ⁴⁺ Superatoms via Hydride Doping. Journal of the American Chemical	0 0 0 rgBT 6.6	79
59	Society, 2019, 141, 15994-16002. Elucidating the Doping Effect on the Electronic Structure of Thiolateâ€Protected Silver Superatoms by Photoelectron Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 11637-11641.	7.2	41
60	Structural Evolution of Iridium Oxide Cluster Anions Ir <i>><pre>Ir<i>>_n</i>>_m</pre></i> _m â€" (<i>n</i> <= 5â€"8) with Sequential Oxidation: Binding Mode of O Atoms and Ir Framework. Journal of Physical Chemistry C, 2019, 123, 15301-15306.	1.5	8
61	Synthesis of Trimetallic (HPd@M ₂ Au ₈) ³⁺ Superatoms (M = Ag, Cu) via Hydride-Mediated Regioselective Doping to (Pd@Au ₈) ²⁺ . ACS Omega, 2019, 4, 7070-7075.	1.6	30
62	Photoinduced Thermionic Emission from [M ₂₅ (SR) ₁₈] ^{â^'} (M = Au,) Tj ETQ 13174-13179.	q0 0 0 rgE 1.5	3T /Overlock 26
63	N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nature Chemistry, 2019, 11, 419-425.	6.6	333
64	Reduction-resistant [Au ₂₅ (cyclohexanethiolate) ₁₈] ⁰ with an Icosahedral Au ₁₃ Core. Chemistry Letters, 2019, 48, 885-887.	0.7	8
65	Acid–base equilibrium of the chromophore counterion results in distinct photoisomerization reactivity in the primary event of proteorhodopsin. Physical Chemistry Chemical Physics, 2019, 21, 25728-25734.	1.3	9
66	Asymmetric aerobic oxidation of secondary alcohols catalyzed by $poly(N-vinyl-2-pyrrolidone)-stabilized gold clusters modified with cyclodextrin derivatives. Chemical Communications, 2019, 55, 15033-15036.$	2.2	11
67	Controlling Nanoparticles with Atomic Precision. Accounts of Chemical Research, 2019, 52, 1-1.	7.6	46
68	X-ray Absorption Spectroscopy on Atomically Precise Metal Clusters. Bulletin of the Chemical Society of Japan, 2019, 92, 193-204.	2.0	38
69	Characterization of Chemically Modified Gold/Silver Superatoms in the Gas Phase., 2019,, 223-253.		0
70	Au ₂₅ -Loaded BaLa ₄ Ti ₄ O ₁₅ Water-Splitting Photocatalyst with Enhanced Activity and Durability Produced Using New Chromium Oxide Shell Formation Method. Journal of Physical Chemistry C, 2018, 122, 13669-13681.	1.5	67
71	Gold Ultrathin Nanorods with Controlled Aspect Ratios and Surface Modifications: Formation Mechanism and Localized Surface Plasmon Resonance. Journal of the American Chemical Society, 2018, 140, 6640-6647.	6.6	58
72	Efficient One-Pot Synthesis and pH-Dependent Tuning of Photoluminescence and Stability of Au ₁₈ (SC ₂ H _{CO₂H)₁₄ Cluster. Journal of Physical Chemistry A, 2018, 122, 1228-1234.}	1.1	17

#	ARTICLE	IF	Citations
73	Size-Dependent Polymorphism in Aluminum Carbide Cluster Anions Al _{<i>n</i>} C ₂ ^{â€"} : Formation of Acetylide-Containing Structures. Journal of Physical Chemistry C, 2018, 122, 8341-8347.	1.5	9
74	Doping a Single Palladium Atom into Gold Superatoms Stabilized by PVP: Emergence of Hydrogenation Catalysis. Topics in Catalysis, 2018, 61, 136-141.	1.3	30
75	Dynamic Behavior of Rh Species in Rh/Al ₂ O ₃ Model Catalyst during Three-Way Catalytic Reaction: An <i>Operando</i> X-ray Absorption Spectroscopy Study. Journal of the American Chemical Society, 2018, 140, 176-184.	6.6	55
76	Hydride Doping of Chemically Modified Gold-Based Superatoms. Accounts of Chemical Research, 2018, 51, 3074-3083.	7.6	106
77	Photoelectron Spectroscopy of Molecular Anion of Alq3: An Estimation of Reorganization Energy for Electron Transport in the Bulk. ACS Omega, 2018, 3, 15200-15204.	1.6	2
78	Superior Base Catalysis of Group 5 Hexametalates [M ₆ O ₁₉] ^{8–} (M =) T	j ETQq0 C 1.5	0 o rgBT /Over 34
	Journal of Physical Chemistry C, 2018, 122, 29398-29404.		
79	Abstraction of the I Atom from CH ₃ I by Gas-Phase Au _{<i>n</i>} [–] (<i>n</i> = 1–4) via Reductive Activation of the C–I Bond. ACS Omega, 2018, 3, 16874-16881.	1.6	8
80	Interconversions of Structural Isomers of [PdAu ₈ 1csup>33) ₈ 2+ and [Au ₉ (PPh ₃) ₈] ³⁺ Revealed by Ion Mobility Mass Spectrometry. Journal of Physical Chemistry C, 2018, 122, 23123-23128.	1.5	23
81	Hydride-Mediated Controlled Growth of a Bimetallic (Pd@Au ₈) ²⁺ Superatom to a Hydride-Doped (HPd@Au ₁₀) ³⁺ Superatom. Journal of the American Chemical Society, 2018, 140, 12314-12317.	6.6	74
82	An Au ₂₅ (SR) ₁₈ Cluster with a Face-Centered Cubic Core. Journal of Physical Chemistry C, 2018, 122, 13199-13204.	1.5	33
83	Prominent hydrogenation catalysis of a PVP-stabilized Au ₃₄ superatom provided by doping a single Rh atom. Chemical Communications, 2018, 54, 5915-5918.	2.2	35
84	Collision-Induced Dissociation of Undecagold Clusters Protected by Mixed Ligands [Au ₁₁ (PPh ₃) ₈ X ₂] ⁺ (X = Cl, C≡CPh). ACS Omega, 2018, 3, 6237-6242.	1.6	30
85	Hydride-Doped Gold Superatom (Au ₉ H) ²⁺ : Synthesis, Structure, and Transformation. Journal of the American Chemical Society, 2018, 140, 8380-8383.	6.6	103
86	Structural Model of Ultrathin Gold Nanorods Based on High-Resolution Transmission Electron Microscopy: Twinned 1D Oligomers of Cuboctahedrons. Journal of Physical Chemistry C, 2017, 121, 10942-10947.	1.5	4
87	Hydrogen-Mediated Electron Doping of Gold Clusters As Revealed by In Situ X-ray and UV–vis Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 2368-2372.	2.1	31
88	Suppressing Isomerization of Phosphine-Protected Au ₉ Cluster by Bond Stiffening Induced by a Single Pd Atom Substitution. Inorganic Chemistry, 2017, 56, 8319-8325.	1.9	50
89	Lewis Base Catalytic Properties of [Nb ₁₀ O ₂₈] ^{6â^'} for CO ₂ Fixation to Epoxide: Kinetic and Theoretical Studies. Chemistry - an Asian Journal, 2017, 12, 1635-1640.	1.7	21
90	Observation and the Origin of Magic Compositions of Co _{<i>n</i>} <ism< i=""><ism>€" Formed in Oxidation of Cobalt Cluster Anions. Journal of Physical Chemistry C, 2017, 121, 10957-10963.</ism></ism<>	1.5	9

#	Article	IF	Citations
91	Monodisperse Iridium Clusters Protected by Phenylacetylene: Implication for Size-Dependent Evolution of Binding Sites. Journal of Physical Chemistry C, 2017, 121, 10936-10941.	1.5	19
92	Photoassisted Homocoupling of Methyl Iodide Mediated by Atomic Gold in Low-Temperature Neon Matrix. Journal of Physical Chemistry A, 2017, 121, 8408-8413.	1.1	5
93	A gold superatom with 10 electrons in Au ₁₃ (PPh ₃) ₈ ((i)pSC ₆ H ₄ CO ₂ l APL Materials, 2017, 5, 053402.	H). 2sub>3∙	< ∤a ub>.
94	Formation of Grignard Reagent-like Complex [CH ₃ â€"Mâ€"I] ^{â^'} via Oxidative Addition of CH ₃ I on Coinage Metal Anions M ^{â^'} (M = Cu, Ag, Au) in the Gas Phase. Chemistry Letters, 2017, 46, 676-679.	0.7	10
95	Anion photoelectron spectroscopy of free [Au ₂₅ 18] ^{â^'} . Nanoscale, 2017, 9, 13409-13412.	2.8	35
96	Ion Transport across Biological Membranes by Carborane-Capped Gold Nanoparticles. ACS Nano, 2017, 11, 12492-12499.	7.3	43
97	Structure Determination of a Water-Soluble 144-Gold Atom Particle at Atomic Resolution by Aberration-Corrected Electron Microscopy. ACS Nano, 2017, 11, 11866-11871.	7.3	47
98	Atomically-Precise Synthesis and Structure Determination of Coinage Metal Clusters. Hyomen Kagaku, 2017, 38, 4-11.	0.0	0
99	Optical Properties of Ultra-Small Gold Nanostructures. Springer Series in Chemical Physics, 2017, , 205-218.	0.2	1
100	Selective and High‥ield Synthesis of Oblate Superatom [PdAu ₈ (PPh ₃) ₈] ²⁺ . ChemElectroChem, 2016, 3, 1206-1211.	1.7	18
101	Rayleigh Instability and Surfactant-Mediated Stabilization of Ultrathin Gold Nanorods. Journal of Physical Chemistry C, 2016, 120, 17006-17010.	1.5	27
102	Partially oxidized iridium clusters within dendrimers: size-controlled synthesis and selective hydrogenation of 2-nitrobenzaldehyde. Nanoscale, 2016, 8, 11371-11374.	2.8	30
103	Controlled Synthesis of Carbonâ€Supported Gold Clusters for Rational Catalyst Design. Chemical Record, 2016, 16, 2338-2348.	2.9	40
104	Tuning the electronic structure of thiolate-protected 25-atom clusters by co-substitution with metals having different preferential sites. Dalton Transactions, 2016, 45, 18064-18068.	1.6	51
105	Amplification of the Optical Activity of Gold Clusters by the Proximity of BINAP. Journal of Physical Chemistry Letters, 2016, 7, 4509-4513.	2.1	80
106	Halogen adsorbates on polymer-stabilized gold clusters: Mass spectrometric detection and effects on catalysis. Chinese Journal of Catalysis, 2016, 37, 1656-1661.	6.9	12
107	Selective and Highâ€Yield Synthesis of Oblate Superatom [PdAu ₈ (PPh ₃) ₈] ²⁺ . ChemElectroChem, 2016, 3, 1190-1190.	1.7	1
108	Size-Specific, Dissociative Activation of Carbon Dioxide by Cobalt Cluster Anions. Journal of Physical Chemistry C, 2016, 120, 14209-14215.	1.5	36

#	Article	IF	Citations
109	Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates. Nature Communications, 2016, 7, 10414.	5.8	140
110	Application of group V polyoxometalate as an efficient base catalyst: a case study of decaniobate clusters. RSC Advances, 2016, 6, 16239-16242.	1.7	26
111	Oxidative Addition of CH ₃ I to Au [–] in the Gas Phase. Journal of Physical Chemistry A, 2016, 120, 957-963.	1.1	19
112	The electrooxidation-induced structural changes of gold di-superatomic molecules: Au ₂₃ vs. Au ₂₅ . Physical Chemistry Chemical Physics, 2016, 18, 4822-4827.	1.3	16
113	Repeated appearance and disappearance of localized surface plasmon resonance in 1.2 nm gold clusters induced by adsorption and desorption of hydrogen atoms. Nanoscale, 2016, 8, 2544-2547.	2.8	23
114	Controlled Synthesis. Frontiers of Nanoscience, 2015, 9, 9-38.	0.3	5
115	Slow-Reduction Synthesis of a Thiolate-Protected One-Dimensional Gold Cluster Showing an Intense Near-Infrared Absorption. Journal of the American Chemical Society, 2015, 137, 7027-7030.	6.6	68
116	Preface to Special Issue on Current Trends in Clusters and Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 10795-10796.	1.5	1
117	Density Functional Theory Study on Stabilization of the Al ₁₃ Superatom by Poly(vinylpyrrolidone). Journal of Physical Chemistry C, 2015, 119, 10904-10909.	1.5	15
118	A Critical Size for Emergence of Nonbulk Electronic and Geometric Structures in Dodecanethiolate-Protected Au Clusters. Journal of the American Chemical Society, 2015, 137, 1206-1212.	6.6	322
119	Synthesis and Catalytic Application of Ag ₄₄ Clusters Supported on Mesoporous Carbon. Journal of Physical Chemistry C, 2015, 119, 27483-27488.	1.5	54
120	Chemically Modified Gold Superatoms and Superatomic Molecules. Chemical Record, 2014, 14, 897-909.	2.9	47
121	Nonscalable Oxidation Catalysis of Gold Clusters. Accounts of Chemical Research, 2014, 47, 816-824.	7.6	520
122	A face-sharing bi-icosahedral model for Al ₂₃ ^{â^'} . Physical Chemistry Chemical Physics, 2014, 16, 21717-21720.	1.3	7
123	A twisted bi-icosahedral Au ₂₅ cluster enclosed by bulky arenethiolates. Chemical Communications, 2014, 50, 839-841.	2.2	49
124	Hydrogen-induced structural transformation of AuCu nanoalloys probed by synchrotron X-ray diffraction techniques. Nanoscale, 2014, 6, 4067-4071.	2.8	24
125	Electron microscopy of gold nanoparticles at atomic resolution. Science, 2014, 345, 909-912.	6.0	269
126	Preferential Location of Coinage Metal Dopants (M = Ag or Cu) in [Au _{25–<i>x</i>} M _{<i>x</i>} (SC ₂ H ₄ Ph) ₁₈] <sup (<i="">x) â^1/4 1) As Determined by Extended X-ray Absorption Fine Structure and Density Functional Theory Calculations. Journal of Physical Chemistry C, 2014, 118, 25284-25290.</sup>	ɔ>â^² <td>> 98</td>	> 98

#	Article	IF	CITATIONS
127	Thiolate-Mediated Selectivity Control in Aerobic Alcohol Oxidation by Porous Carbon-Supported Au ₂₅ Clusters. ACS Catalysis, 2014, 4, 3696-3700.	5. 5	168
128	Selective Hydrogenation of 4-Nitrobenzaldehyde to 4-Aminobenzaldehyde by Colloidal RhCu Bimetallic Nanoparticles. Topics in Catalysis, 2014, 57, 1049-1053.	1.3	15
129	Surface Plasmon Resonance in Gold Ultrathin Nanorods and Nanowires. Journal of the American Chemical Society, 2014, 136, 8489-8491.	6.6	76
130	Au ₂₅ Clusters Containing Unoxidized Tellurolates in the Ligand Shell. Journal of Physical Chemistry Letters, 2014, 5, 2072-2076.	2.1	54
131	CHAPTER 10. Metal Clusters in Catalysis. RSC Smart Materials, 2014, , 291-322.	0.1	3
132	Selenolate-Protected Au ₃₈ Nanoclusters: Isolation and Structural Characterization. Journal of Physical Chemistry Letters, 2013, 4, 3181-3185.	2.1	78
133	Formation of a Pd@Au ₁₂ Superatomic Core in Au ₂₄ Pd ₁ (SC ₁₂ H ₂₅) ₁₈ Probed by ¹⁹⁷ Au Mössbauer and Pd K-Edge EXAFS Spectroscopy. Journal of Physical Chemistry Letters, 2013. 4. 3579-3583.	2.1	89
134	Enhanced magnetization in highly crystalline and atomically mixed bcc Fe–Co nanoalloys prepared by hydrogen reduction of oxide composites. Nanoscale, 2013, 5, 1489.	2.8	27
135	Direct atomic imaging and density functional theory study of the Au24Pd1 cluster catalyst. Nanoscale, 2013, 5, 9620.	2.8	37
136	Structural evolution of glutathionate-protected gold clusters studied by means of 197 Au Mössbauer spectroscopy. Hyperfine Interactions, 2013, 217, 91-98.	0.2	8
137	Binding Motif of Terminal Alkynes on Gold Clusters. Journal of the American Chemical Society, 2013, 135, 9450-9457.	6.6	179
138	Dendrimer-Encapsulated Copper Cluster as a Chemoselective and Regenerable Hydrogenation Catalyst. ACS Catalysis, 2013, 3, 182-185.	5.5	85
139	Structural Characterization of Unprecedented Al ₁₄ O [–] and Al ₁₅ O ₂ [–] : Photoelectron Spectroscopy and Density Functional Calculations. Journal of Physical Chemistry C, 2013, 117, 6664-6668.	1.5	16
140	Production of Oxidation-resistant Copper Nanoparticles on Carbon Nanotubes by Photoreduction. Chemistry Letters, 2013, 42, 168-170.	0.7	9
141	Selective Hydrogenation of Nitroaromatics by Colloidal Iridium Nanoparticles. Chemistry Letters, 2013, 42, 1023-1025.	0.7	22
142	Study of the structure and electronic state of thiolate-protected gold clusters by means of 197Au Mössbauer spectroscopy., 2013, , 563-567.		0
143	Origin of Size Specific Catalysis by Polymer-stabilized Au Clusters for Aerobic Oxidation Reactions. Hyomen Kagaku, 2012, 33, 399-403.	0.0	1
144	Toward an Atomic-Level Understanding of Size-Specific Properties of Protected and Stabilized Gold Clusters. Bulletin of the Chemical Society of Japan, 2012, 85, 151-168.	2.0	224

#	Article	IF	CITATIONS
145	Selective synthesis of organogold magic clusters Au54(Cî€,CPh)26. Chemical Communications, 2012, 48, 6085.	2.2	91
146	Platonic Hexahedron Composed of Six Organic Faces with an Inscribed Au Cluster. Journal of the American Chemical Society, 2012, 134, 816-819.	6.6	25
147	Thermal stabilization of thin gold nanowires by surfactant-coating: a molecular dynamics study. Nanoscale, 2012, 4, 585-590.	2.8	16
148	Enhancement in Aerobic Alcohol Oxidation Catalysis of Au ₂₅ Clusters by Single Pd Atom Doping. ACS Catalysis, 2012, 2, 1519-1523.	5.5	358
149	Synthesis and the Origin of the Stability of Thiolate-Protected Au ₁₃₀ and Au ₁₈₇ Clusters. Journal of Physical Chemistry Letters, 2012, 3, 1624-1628.	2.1	156
150	A New Binding Motif of Sterically Demanding Thiolates on a Gold Cluster. Journal of the American Chemical Society, 2012, 134, 14295-14297.	6.6	122
151	Preparation and Catalysis of Supported NiO Nanocluster for Oxidative Coupling of Thiophenol. Transactions of the Materials Research Society of Japan, 2012, 37, 177-180.	0.2	7
152	Size and Shape of Nanoclusters: Singleâ€Shot Imaging Approach. Small, 2012, 8, 2361-2364.	5.2	26
153	Stabilized gold clusters: from isolation toward controlled synthesis. Nanoscale, 2012, 4, 4027.	2.8	280
154	Study of the structure and electronic state of thiolate-protected gold clusters by means of 197Au Mössbauer spectroscopy. Hyperfine Interactions, 2012, 207, 127-131.	0.2	6
155	High-yield synthesis of PVP-stabilized small Pt clusters by microfluidic method. Catalysis Today, 2012, 183, 101-107.	2.2	40
156	Size Control of Ni Nanocluster by the Carbon Chain Length of Secondary Alkoxide. E-Journal of Surface Science and Nanotechnology, 2012, 10, 648-650.	0.1	5
157	Structural evolution of glutathionate-protected gold clusters studied by means of 197 Au Mössbauer spectroscopy., 2012,, 91-98.		0
158	Production of an ordered (B2) CuPd nanoalloy by low-temperature annealing under hydrogen atmosphere. Dalton Transactions, 2011, 40, 4842.	1.6	47
159	Highly Selective Ammonia Synthesis from Nitrate with Photocatalytically Generated Hydrogen on CuPd/TiO ₂ . Journal of the American Chemical Society, 2011, 133, 1150-1152.	6.6	98
160	Aerobic Oxidation of Cyclohexane Catalyzed by Size-Controlled Au Clusters on Hydroxyapatite: Size Effect in the Sub-2 nm Regime. ACS Catalysis, 2011, 1, 2-6.	5.5	383
161	Organogold Clusters Protected by Phenylacetylene. Journal of the American Chemical Society, 2011, 133, 20123-20125.	6.6	161
162	197Au Mössbauer Spectroscopy of Au25(SG)18â^' Revisited. Chemistry Letters, 2011, 40, 1292-1293.	0.7	11

#	Article	IF	CITATIONS
163	Isolation and structural characterization of magic silver clusters protected by 4-(tert-butyl)benzyl mercaptan. Chemical Communications, 2011, 47, 5693.	2.2	66
164	Synthesis and Characterization of Au $<$ sub $>102sub>(<i>p</i>-MBA)<sub>44sub>Nanoparticles. Journal of the American Chemical Society, 2011, 133, 2976-2982.$	6.6	219
165	Aerobic Oxidations Catalyzed by Colloidal Nanogold. Chemistry - an Asian Journal, 2011, 6, 736-748.	1.7	166
166	Size-Controlled Synthesis of Gold Clusters as Efficient Catalysts for Aerobic Oxidation. Catalysis Surveys From Asia, 2011, 15, 230-239.	1.0	31
167	Fluorescent Fe(II) metallo-supramolecular polymers: metal-ion-directed self-assembly of new bisterpyridines containing triethylene glycol chains. Polymer Journal, 2010, 42, 336-341.	1.3	28
168	Size Effect of Silica-supported Gold Clusters in the Microwave-assisted Oxidation of Benzyl Alcohol with H2O2. Chemistry Letters, 2010, 39, 159-161.	0.7	35
169	MALDI Mass Analysis of $11\ \text{kDa}$ Gold Clusters Protected by Octadecanethiolate Ligands. Journal of Physical Chemistry C, 2010, 114, 16004-16009.	1.5	73
170	Chirality and Electronic Structure of the Thiolate-Protected Au ₃₈ Nanocluster. Journal of the American Chemical Society, 2010, 132, 8210-8218.	6.6	401
171	Efficient and selective epoxidation of styrene with TBHP catalyzed by Au25clusters on hydroxyapatite. Chemical Communications, 2010, 46, 550-552.	2.2	271
172	Aerobic Oxygenation of Benzylic Ketones Promoted by a Gold Nanocluster Catalyst. Synlett, 2009, 2009, 245-248.	1.0	40
173	Effect of Electronic Structures of Au Clusters Stabilized by Poly(<i>N</i> -vinyl-2-pyrrolidone) on Aerobic Oxidation Catalysis. Journal of the American Chemical Society, 2009, 131, 7086-7093.	6.6	615
174	Preparation of \hat{a}^4 1 nm Gold Clusters Confined within Mesoporous Silica and Microwave-Assisted Catalytic Application for Alcohol Oxidation. Journal of Physical Chemistry C, 2009, 113, 13457-13461.	1.5	136
175	Magic Numbers of Gold Clusters Stabilized by PVP. Journal of the American Chemical Society, 2009, 131, 18216-18217.	6.6	114
176	Size Determination of Gold Clusters by Polyacrylamide Gel Electrophoresis in a Large Cluster Region. Journal of Physical Chemistry C, 2009, 113, 14076-14082.	1.5	75
177	Catalytic Activity of Gold Nanocluster Catalyst Protected by Poly (N-vinyl 2-pyrrolidone). Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 517-528.	0.0	3
178	Ubiquitous 8 and 29 kDa Gold:Alkanethiolate Cluster Compounds: Mass-Spectrometric Determination of Molecular Formulas and Structural Implications. Journal of the American Chemical Society, 2008, 130, 8608-8610.	6.6	377
179	Microfluidic Synthesis and Catalytic Application of PVP-Stabilized, \hat{a}^4 1 nm Gold Clusters. Langmuir, 2008, 24, 11327-11330.	1.6	132
180	Luminescence properties of metallo-supramolecular coordination polymers assembled from pyridine ring functionalized ditopic bis-terpyridines and Ru(ii) ion. Journal of Materials Chemistry, 2008, 18, 4555.	6.7	50

#	Article	IF	CITATIONS
181	Ligand Exchange of Au ₂₅ SG ₁₈ Leading to Functionalized Gold Clusters: Spectroscopy, Kinetics, and Luminescence. Journal of Physical Chemistry C, 2008, 112, 12168-12176.	1.5	307
182	Systematic Synthesis of Monolayer-Protected Gold Clusters with Well-Defined Chemical Compositions., 2008,, 373-382.		11
183	Electronic Structure of Dendrimer-Au Hybrid Nanoparticle: Hard X-ray Photoemission Study. Transactions of the Materials Research Society of Japan, 2008, 33, 169-172.	0.2	0
184	Synthetic Application of PVP-stabilized Au Nanocluster Catalyst to Aerobic Oxidation of Alcohols in Aqueous Solution under Ambient Conditions. Chemistry Letters, 2007, 36, 212-213.	0.7	81
185	Lewis Acid Character of Zero-valent Gold Nanoclusters under Aerobic Conditions: Intramolecular Hydroalkoxylation of Alkenes. Chemistry Letters, 2007, 36, 646-647.	0.7	66
186	Effect of Ag-Doping on the Catalytic Activity of Polymer-Stabilized Au Clusters in Aerobic Oxidation of Alcohol. Journal of Physical Chemistry C, 2007, 111, 4885-4888.	1.5	141
187	Formation of Alkanethiolate-Protected Gold Clusters with Unprecedented Core Sizes in the Thiolation of Polymer-Stabilized Gold Clusters. Journal of Physical Chemistry C, 2007, 111, 4153-4158.	1.5	84
188	Biicosahedral Gold Clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+(n= 2â^'18):  A Stepping Stone to Cluster-Assembled Materials. Journal of Physical Chemistry C, 2007, 111, 7845-7847.	1.5	349
189	Thermosensitive Gold Nanoclusters Stabilized by Well-Defined Vinyl Ether Star Polymers:  Reusable and Durable Catalysts for Aerobic Alcohol Oxidation. Journal of the American Chemical Society, 2007, 129, 12060-12061.	6.6	207
190	Thiolate-Induced Structural Reconstruction of Gold Clusters Probed by197Au Mössbauer Spectroscopy. Journal of the American Chemical Society, 2007, 129, 7230-7231.	6.6	34
191	Origin of Magic Stability of Thiolated Gold Clusters:  A Case Study on Au ₂₅ (SC ₆ H ₁₃) ₁₈ . Journal of the American Chemical Society, 2007, 129, 11322-11323.	6.6	332
192	Synthesis of Normal and Inverted Goldâ^'Silver Coreâ^'Shell Architectures in \hat{l}^2 -Cyclodextrin and Their Applications in SERS. Journal of Physical Chemistry C, 2007, 111, 10806-10813.	1.5	286
193	Thermal and photochemical reactivity of oxygen atoms on gold nanocluster surfaces. Surface Science, 2007, 601, 5226-5231.	0.8	5
194	Oxidative homo-coupling of potassium aryltrifluoroborates catalyzed by gold nanocluster under aerobic conditions. Journal of Organometallic Chemistry, 2007, 692, 368-374.	0.8	95
195	Extremely High Stability of Glutathionate-Protected Au25 Clusters Against Core Etching. Small, 2007, 3, 835-839.	5.2	373
196	Electronic structure of dendrimer-encapsulated AuÂnanocluster. European Physical Journal D, 2007, 43, 233-236.	0.6	5
197	Deposition and fabrication of alkanethiolate gold nanocluster films on TiO2(110) and the effects of plasma etching. Surface Science, 2007, 601, 5121-5126.	0.8	6
198	Electron localization in negatively charged formamide clusters studied by photodetachment spectroscopy. Physical Chemistry Chemical Physics, 2006, 8, 827-833.	1.3	17

#	Article	IF	Citations
199	Chiroptical Activity of BINAP-Stabilized Undecagold Clusters. Journal of Physical Chemistry B, 2006, 110, 11611-11614.	1.2	181
200	Kinetic Stabilization of Growing Gold Clusters by Passivation with Thiolates. Journal of Physical Chemistry B, 2006, 110, 12218-12221.	1.2	103
201	Chromatographic Isolation of "Missing―Au55Clusters Protected by Alkanethiolates. Journal of the American Chemical Society, 2006, 128, 6036-6037.	6.6	136
202	X-ray Magnetic Circular Dichroism of Size-Selected, Thiolated Gold Clusters. Journal of the American Chemical Society, 2006, 128, 12034-12035.	6.6	136
203	Size effect on the catalysis of gold clusters dispersed in water for aerobic oxidation of alcohol. Chemical Physics Letters, 2006, 429, 528-532.	1.2	193
204	Subnanometer-sized Gold Clusters with Dual Molecular Receptors: Synthesis and Assembly in One-dimensional Arrangements. Chemistry Letters, 2005, 34, 1638-1639.	0.7	21
205	Large-Scale Synthesis of Thiolated Au25Clusters via Ligand Exchange Reactions of Phosphine-Stabilized Au11Clusters. Journal of the American Chemical Society, 2005, 127, 13464-13465.	6.6	413
206	Size-Specific Catalytic Activity of Polymer-Stabilized Gold Nanoclusters for Aerobic Alcohol Oxidation in Water. Journal of the American Chemical Society, 2005, 127, 9374-9375.	6.6	832
207	Glutathione-Protected Gold Clusters Revisited:  Bridging the Gap between Gold(I)â^'Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. Journal of the American Chemical Society, 2005, 127, 5261-5270.	6.6	1,492
208	Visible photoluminescence from nearly monodispersed Au12 clusters protected by meso-2,3-dimercaptosuccinic acid. Chemical Physics Letters, 2004, 383, 161-165.	1.2	90
209	Highly oxygenated fullerene anions C60Onâ^' formed by corona discharge ionization in the gas phase. Chemical Physics Letters, 2004, 384, 283-287.	1.2	12
210	Structures and Stabilities of Alkanethiolate Monolayers on Palladium Clusters As Studied by Gel Permeation Chromatography. Journal of Physical Chemistry B, 2004, 108, 3496-3503.	1.2	33
211	Magic-Numbered AunClusters Protected by Glutathione Monolayers (n= 18, 21, 25, 28, 32, 39):Â Isolation and Spectroscopic Characterization. Journal of the American Chemical Society, 2004, 126, 6518-6519.	6.6	529
212	Colloidal Gold Nanoparticles as Catalyst for Carbonâ^'Carbon Bond Formation:Â Application to Aerobic Homocoupling of Phenylboronic Acid in Water. Langmuir, 2004, 20, 11293-11296.	1.6	356
213	EXAFS study on interfacial structure between Pd cluster and n-octadecanethiolate monolayer: formation of mixed Pd–S interlayer. Chemical Physics Letters, 2003, 376, 26-32.	1.2	40
214	One-Pot Preparation of Subnanometer-Sized Gold Clusters via Reduction and Stabilization bymeso-2,3-Dimercaptosuccinic Acid. Journal of the American Chemical Society, 2003, 125, 4046-4047.	6.6	174
215	Gas-Phase Reaction of Hydrated CO2•-Anion Radical with CH3I. Journal of Physical Chemistry A, 2003, 107, 8476-8483.	1.1	17
216	Self-Assembly of Si Clusters into Single Crystal Arrangements: Formation of Si10Cluster Crystals. Japanese Journal of Applied Physics, 2003, 42, L616-L618.	0.8	3

#	Article	IF	CITATIONS
217	Pd/C as a Reusable Catalyst for the Coupling Reaction of Halophenols and Arylboronic Acids in Aqueous Media. Journal of Organic Chemistry, 2002, 67, 2721-2722.	1.7	248
218	Photochemistry of (NO)nâ^ as studied by photofragment mass spectrometry. International Journal of Mass Spectrometry, 2002, 220, 137-143.	0.7	3
219	Structural evolution in (CO2)n clusters (n<103) as studied by mass spectrometry. Chemical Physics Letters, 2002, 364, 127-132.	1.2	21
220	Formation of Pdn(SR)m clusters (n<60) in the reactions of PdCl2 and RSH (R=n-C18H37, n-C12H25). Chemical Physics Letters, 2002, 366, 561-566.	1,2	33
221	Ab initio study of CO2â´'â‹CO2â†"C2O4â´' isomerization. Chemical Physics Letters, 2001, 348, 461-468.	1.2	16
222	Photodissociation of gas-phase Iâ^3: product branching in the visible and UV regions. Chemical Physics Letters, 2001, 350, 233-239.	1.2	17
223	Ab initio study of (CO2)nâ^: structures and stabilities of isomers. Chemical Physics Letters, 2001, 340, 376-384.	1.2	29
224	Electronic isomers in [(CO2)nROH]â^' cluster anions. I. Photoelectron spectroscopy. Journal of Chemical Physics, 1999, 110, 7846-7857.	1.2	35
225	Electronic isomers in [(CO2)nROH]â^' cluster anions. II. Ab initio calculations. Journal of Chemical Physics, 1999, 111, 6333-6344.	1.2	34
226	Formation of N3O3â° anion in (NO)nâ°: photoelectron spectroscopy and ab initio calculations. Chemical Physics Letters, 1998, 295, 416-422.	1.2	13
227	Reaction of Negatively-Charged Clusters of Carbon Dioxide with CH3I:  Formation of Novel Molecular Anion CH3CO2I Journal of Physical Chemistry A, 1997, 101, 5103-5110.	1.1	23
228	Electronic structures of (SO2)nâ^' as studied by photoelectron spectroscopy. International Journal of Mass Spectrometry and Ion Processes, 1997, 171, 273-280.	1.9	8
229	Photoelectron spectroscopy of (CO2)nâ° revisited: core switching in the 2 â $@\frac{1}{2}$ n â $@\frac{1}{2}$ 16 range. Chemical Physics Letters, 1997, 268, 429-433.	1.2	96
230	Characterization of the anionic intracluster polymerization reaction product of 2-chloroacrylonitrile trimers by photoelectron spectroscopy. Chemical Physics Letters, 1997, 269, 17-21.	1.2	11
231	Negative-ion photoelectron spectroscopy of (CS2)nâ^: coexistence of electronic isomers. Chemical Physics Letters, 1997, 279, 179-184.	1,2	42
232	Photoabsorption and photofragmentation studies of acetyloxy iodide anion CH3CO2lâ°. Chemical Physics Letters, 1997, 280, 348-352.	1.2	1
233	Photodissociation of acrylonitrile cluster anions. Chemical Physics Letters, 1996, 260, 423-427.	1.2	13
234	Formation of [(CO2)nCH3I]â^' anions in the reaction of (CO2)Nâ^' with CH3I. Chemical Physics Letters, 1996, 251, 309-314.	1.2	8

#	Article	IF	CITATIONS
235	Fragmentation process of sizeâ€selected aluminum cluster anions in collision with a silicon surface. Journal of Chemical Physics, 1996, 104, 1387-1393.	1.2	39
236	FRAGMENTATION OF ALUMINUM-CLUSTER ANIONS IN COLLISION WITH A SOLID SURFACE. Surface Review and Letters, 1996, 03, 591-595.	0.5	5
237	SOLVATION EFFECTS ON COLLISIONAL PROCESSES OF SIZE-SELECTED \$\{m{I}}_2^- (\{m{CO}}_2)_n\\$ CLUSTER IONS WITH SILICON SURFACE. Surface Review and Letters, 1996, 03, 901-904.	0.5	20
238	DISSOCIATIVE SCATTERING OF SIZE-SELECTED $(\{m\{C\}\}_6 \{m\{F\}\}_6)_n^-\$ (n=1â \in "5) FROM A SILICON SURFACE. Surface Review and Letters, 1996, 03, 875-879.	0.5	6
239	Characterization of the 2-Chloroacrylonitrile Negative Ion Using Photoelectron and Photofragmentation Spectroscopies. The Journal of Physical Chemistry, 1995, 99, 1655-1659.	2.9	15
240	Collision Processes of Size-Selected Cluster Anions, (C6F6)n- (n = 1-5), with a Silicon Surface. The Journal of Physical Chemistry, 1995, 99, 6367-6373.	2.9	28
241	Collision-Induced Dissociation of Acrylonitrile Cluster Ions: Geometrical Structure of Polymerized Cluster Anion. The Journal of Physical Chemistry, 1995, 99, 17354-17358.	2.9	17
242	Competitive electron capture in mixed clusters, X (HCN)m (X=C2H5OH, CO2, O2, and SF6). Chemical Physics Letters, 1994, 218, 1-6.	1.2	3
243	Intracluster Anionic Polymerization Initiated by Electron Attachment onto Olefin Clusters (CH2:CXCN)N (X = Cl, H, D, and CH3) and (CH2:CHC6H5)N. Journal of the American Chemical Society, 1994, 116, 9555-9564.	6.6	25
244	Photofragmentation of anionic reaction intermediates formed upon electron attachment to 2-chloroacrylonitrile clusters. Evidence for polymer degradation in the cluster regime. Chemical Physics Letters, 1993, 201, 351-356.	1.2	14
245	Anionic polymerization in the gas-phase cluster of 2-chloroacrylonitrile. The Journal of Physical Chemistry, 1992, 96, 5671-5673.	2.9	17
246	Intensity enhancement in the size distributions of acrylate cluster anions. Chemical Physics Letters, 1992, 197, 438-442.	1.2	15
247	Observation of acrylonitrile molecular anion in the gas phase. Chemical Physics Letters, 1991, 185, 511-515.	1.2	10
248	Structureâ€constrained anionic polymerization in hydrogenâ€bonded acrylonitrile clusters. Journal of Chemical Physics, 1991, 95, 6989-6992.	1.2	22
249	A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Angewandte Chemie, 0, , .	1.6	1