Kun-kun Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2485713/publications.pdf

Version: 2024-02-01

201674 254184 2,102 67 27 43 h-index citations g-index papers 68 68 68 1002 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1280-1284.	7.6	216
2	Effect of extrusion on corrosion properties of Mg-2Ca- \ddot{i} +Al (\ddot{i} ‡ = 0, 2, 3, 5) alloys. Corrosion Science, 2017, 127, 280-290.	6.6	146
3	Microstructures and mechanical properties of Mg–Al–Ca alloys affected by Ca/Al ratio. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 279-288.	5.6	100
4	Effect of ultra-slow extrusion speed on the microstructure and mechanical properties of Mg-4Zn-0.5Ca alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 367-375.	5.6	87
5	Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite. Materials & Design, 2015, 67, 72-81.	5.1	69
6	High strength Mg-9Al serial alloy processed by slow extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 697, 211-216.	5.6	69
7	Microstructure and mechanical properties of SiCp/AZ91 composite deformed through a combination of forging and extrusion process. Materials & Design, 2010, 31, 3929-3932.	5.1	68
8	High strength SiCp/AZ91 composite assisted by dynamic precipitated Mg17Al12 phase. Journal of Alloys and Compounds, 2018, 732, 328-335.	5. 5	59
9	Recent Research on the Deformation Behavior of Particle Reinforced Magnesium Matrix Composite: A Review. Acta Metallurgica Sinica (English Letters), 2019, 32, 413-425.	2.9	55
10	Microstructure and mechanical properties of Mg-4Zn-xGd (x=0, 0.5, 1, 2) alloys. Journal of Magnesium and Alloys, 2020, 8, 441-451.	11.9	53
11	Microstructure and mechanical properties of SiCp/Mg–Al–Zn composites containing Mg17Al12 phases processed by low-speed extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 610, 243-249.	5.6	48
12	Microstructures, tensile properties and work hardening behavior of SiCp/Mg-Zn-Ca composites. Journal of Alloys and Compounds, 2017, 695, 2215-2223.	5 . 5	48
13	Microstructure, mechanical properties and corrosion properties of Mg-4Zn-xNi alloys for degradable fracturing ball applications. Journal of Alloys and Compounds, 2019, 787, 1290-1300.	5 . 5	48
14	Effects of bimodal size SiC particles on the microstructure evolution and fracture mechanism of AZ91 matrix at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 553, 74-79.	5.6	43
15	Competition behavior of the strengthening effects in as-extruded AZ91 matrix: Influence of pre-existed Mg 17 Al 12 phase. Materials Science & Discourse amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 656, 102-110.	5.6	43
16	Microstructure and corrosion properties of Mg-4Zn-2Gd-0.5Ca alloy influenced by multidirectional forging. Journal of Alloys and Compounds, 2019, 770, 1208-1220.	5.5	43
17	Effects of volume ratio on the microstructure and mechanical properties of particle reinforced magnesium matrix composite. Materials & Design, 2014, 63, 672-677.	5.1	42
18	Microstructure and mechanical properties of Mg-4Zn-0.5Ca alloy fabricated by the combination of forging, homogenization and extrusion process. Journal of Alloys and Compounds, 2017, 720, 196-206.	5 . 5	39

#	Article	IF	CITATIONS
19	Microstructure and elevated tensile properties of submicron SiCp/AZ91 magnesium matrix composite. Materials & Design, 2012, 38, 110-114.	5.1	37
20	Effect of Ca addition on the microstructure and tensile properties of Mg–4.0Zn–2.0Gd alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 609, 1-6.	5.6	37
21	Characterization and strengthening mechanism of SiC nanoparticles reinforced magnesium matrix composite fabricated by ultrasonic vibration assisted squeeze casting. Journal of Materials Research, 2017, 32, 2609-2620.	2.6	37
22	Effect of duty cycle on preparation and corrosion behavior of electrodeposited calcium phosphate coatings on AZ91. Applied Surface Science, 2017, 426, 418-426.	6.1	35
23	High temperature damping behavior of as-deformed Mg matrix influenced by micron and submicron SiCp. Materials Science & SiCp. Materials: Properties, Microstructure and Processing, 2015, 624, 62-70.	5.6	31
24	Work hardening and softening behavior of pure Mg influenced by Zn addition investigated via in-situ neutron diffraction. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138827.	5.6	31
25	Degradation behavior of Mg-4Zn-2Ni alloy with high strength and high degradation rate. Materials Chemistry and Physics, 2020, 249, 123131.	4.0	30
26	Microstructure and mechanical behavior of Mg-5Zn matrix influenced by particle deformation zone. Journal of Materials Science and Technology, 2021, 60, 8-20.	10.7	30
27	Aging behavior of AZ91 matrix influenced by $5\hat{A}^{1/4}$ m SiCp: Investigation on the microstructure and mechanical properties. Journal of Alloys and Compounds, 2017, 727, 1263-1272.	5.5	28
28	Microstructure evolution mechanism of micron particle reinforced magnesium matrix composite at room temperature. Materials Chemistry and Physics, 2012, 134, 581-584.	4.0	27
29	Unique corrosion resistance of ultrahigh pressure Mg-25Al binary alloys. Corrosion Science, 2018, 143, 229-239.	6.6	25
30	Hot deformation behavior and dynamic recrystallization mechanism of an Mg-5wt.%Zn alloy with trace SiCp addition. Journal of Materials Research and Technology, 2021, 10, 422-437.	5.8	24
31	High strength TiCp/Mg-Zn-Ca magnesium matrix nanocomposites with improved formability at low temperature. Journal of Alloys and Compounds, 2019, 792, 267-278.	5.5	23
32	Microstructure and mechanical properties of Al/Mg/Al composite sheets containing trapezoidal shaped intermediate layer. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 811, 140989.	5.6	23
33	Microstructure and tensile properties of magnesium matrix nanocomposite reinforced by high mass fraction of nano-sized particles including TiC and MgZn2. Journal of Alloys and Compounds, 2020, 819, 153348.	5.5	22
34	The effect of Zn/Ca ratio on the microstructure, texture and mechanical properties of dilute Mg–Zn–Ca–Mn alloys that exhibit superior strength. Journal of Materials Science, 2020, 55, 3588-3604.	3.7	22
35	Dynamic Recrystallization Behavior of Bimodal Size SiCp-Reinforced Mg Matrix Composite during Hot Deformation. Acta Metallurgica Sinica (English Letters), 2016, 29, 527-537.	2.9	19
36	Microstructure, and Mechanical and Wear Properties of Grp/AZ91 Magnesium Matrix Composites. Materials, 2019, 12, 1190.	2.9	19

#	Article	IF	Citations
37	Analysis of hot deformation behavior and microstructure evolution of as-cast SiC nanoparticles reinforced magnesium matrix composite. Journal of Materials Research, 2016, 31, 3437-3447.	2.6	18
38	Microstructures and mechanical properties of SiCp/Mg-xAl-2Ca composites collectively influenced by SiCp and Al content. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 510-521.	5.6	18
39	Work hardening and softening behavior of Mg–Zn–Ca alloy influenced by deformable Ti particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142336.	5.6	18
40	High temperature damping behavior controlled by submicron SiCp in bimodal size particle reinforced magnesium matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 668, 55-58.	5.6	17
41	Synergistic effects of hybrid (SiC+TiC) nanoparticles and dynamic precipitates in the design of a high-strength magnesium matrix nanocomposite. Materials Chemistry and Physics, 2021, 259, 124048.	4.0	17
42	Microstructure stability of as-extruded bimodal size SiCp/AZ91 composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 615, 489-496.	5.6	15
43	In vitro biodegradability of Mg–2Gd–xZn alloys with different Zn contents and solution treatments. Rare Metals, 2019, 38, 620-628.	7.1	15
44	Effect of Extrusion Temperature on the Microstructure and Mechanical Properties of Mg–5Al–2Ca Alloy. Acta Metallurgica Sinica (English Letters), 2015, 28, 1015-1023.	2.9	14
45	Development of Mg–Zn–Y–Ca alloys containing icosahedral quasicrystal phase through trace addition of Y. Journal of Materials Research, 2018, 33, 2806-2816.	2.6	14
46	Improved tensile properties of low-temperature and low-speed extruded Mg–χAl–(4.8 â^χ)Ca–0.6Mn alloys. Journal of Materials Research and Technology, 2020, 9, 11717-11730.	5.8	14
47	Microstructure and mechanical properties of TiC nanoparticle-reinforced Mgâ [°] Znâ [°] Ca matrix nanocomposites processed by combining multidirectional forging and extrusion. Transactions of Nonferrous Metals Society of China, 2020, 30, 2394-2412.	4.2	13
48	Microstructure, Tensile Properties and Work Hardening Behavior of an Extruded Mg–Zn–Ca–Mn Magnesium Alloy. Acta Metallurgica Sinica (English Letters), 2020, 33, 922-936.	2.9	13
49	Effect of SiC Nanoparticles on Hot Deformation Behavior and Processing Maps of Magnesium Alloy AZ91. Nanomaterials, 2018, 8, 82.	4.1	12
50	Microstructure and Corrosion Behavior of the As-Extruded Mg–4Zn–2Gd–0.5Ca Alloy. Acta Metallurgica Sinica (English Letters), 2020, 33, 362-374.	2.9	12
51	Hot tensile behavior and deformation mechanism of Mg–5Al–2Ca alloy influenced by SiC particles. Mechanics of Materials, 2020, 150, 103599.	3.2	12
52	Effect of extrusion speed on mixed grain microstructure and tensile properties of a Mg-2.9Zn-1.1Ca-0.5Mn nanocomposite reinforced by a low mass fraction of TiCp. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 796, 140223.	5.6	11
53	Hot Deformation Behavior and Processing Maps of SiC Nanoparticles and Second Phase Synergistically Reinforced Magnesium Matrix Composites. Nanomaterials, 2019, 9, 57.	4.1	10
54	Fabrication, microstructure and mechanical properties of the as-rolled ZW31/PMMCs laminate. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2019, 761, 138043.	5.6	9

#	Article	IF	CITATIONS
55	Corrosion Resistance of AZ91ÂMg Alloy Modified by High-Current Pulsed Electron Beam. Acta Metallurgica Sinica (English Letters), 2019, 32, 218-226.	2.9	8
56	Microstructure and mechanical properties of SiCp/AZ91 composite processed with extrusion and EPT. Materials Science and Technology, 2021, 37, 269-279.	1.6	8
57	Effect of hot extrusion on the microstructure and mechanical properties of SiCNWs/Mg-2Zn-0.1Y composite. Materials Characterization, 2022, 189, 111970.	4.4	8
58	The corrosion properties of AZ91 alloy improved by the addition of trace submicron SiCp. Materials Chemistry and Physics, 2022, 286, 126143.	4.0	7
59	Unique strengthening mechanisms of ultrahigh pressure Mg alloys. Bioactive Materials, 2018, 3, 250-254.	15.6	6
60	Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures. Materials, 2018, 11, 126.	2.9	6
61	Significant Influence of Minor SiCp on Microstructure and Mechanical Properties of Pure Mg. Journal of Materials Engineering and Performance, 2020, 29, 1356-1365.	2.5	6
62	Effect of Interface on Mechanical Properties of Ti/Al/Mg/Al/Ti Laminated Composites. Materials Research, 2020, 23, .	1.3	6
63	Effect of Interface on the Deep Drawability of Ti/Al Multilayered Composites. Metals, 2021, 11, 795.	2.3	5
64	Dynamic mechanical properties and constitutive relationship of particle-reinforced AZ91D composites. Journal of Alloys and Compounds, 2018, 767, 210-214.	5.5	4
65	Synergistic Enhancement of the Strength-Ductility for Stir Casting SiCp/2024Al Composites by Two-Step Deformation. Metals and Materials International, 2021, 27, 5450-5461.	3.4	4
66	Flow stress and deformation behavior of fine-grained Mg matrix influenced by bimodal size SiCp. Journal of Materials Research, 2018, 33, 1723-1732.	2.6	3
67	Improved workability of an Mg-5 wt.%Zn alloy by the addition of trace SiCp. Materials Today Communications, 2020, 25, 101474.	1.9	2