
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2485669/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Feed Composition Differences Resulting from Organic and Conventional Farming Practices Affect Physiological Parameters in Wistar Rats—Results from a Factorial, Two-Generation Dietary Intervention Trial. Nutrients, 2021, 13, 377.	1.7	8
2	Differences in uptake and translocation of foliarâ€applied Zn in maize and wheat. Plant and Soil, 2021, 462, 235-244.	1.8	21
3	Reduced root mycorrhizal colonization as affected by phosphorus fertilization is responsible for high cadmium accumulation in wheat. Plant and Soil, 2021, 468, 19-35.	1.8	28
4	The effect of agronomic factors on crop health and performance of winter wheat varieties bred for the conventional and the low input farming sector. Field Crops Research, 2020, 254, 107822.	2.3	36
5	Nitrogen supply in combination of nitrate and ammonium enhances harnessing of elevated atmospheric CO2 through improved nitrogen and carbon metabolism in wheat (Triticum aestivum). Crop and Pasture Science, 2020, 71, 101.	0.7	8
6	Supraâ€optimal growth temperature exacerbates adverse effects of low Zn supply in wheat. Journal of Plant Nutrition and Soil Science, 2019, 182, 656-666.	1.1	28
7	Effect of predicted climate change on growth and yield performance of wheat under varied nitrogen and zinc supply. Plant and Soil, 2019, 434, 231-244.	1.8	24
8	Zincâ€biofortified seeds improved seedling growth under zinc deficiency and drought stress in durum wheat. Journal of Plant Nutrition and Soil Science, 2018, 181, 388-395.	1.1	26
9	Changes in yield attributes and K allocation in wheat as affected by K deficiency and elevated CO2. Plant and Soil, 2018, 426, 153-162.	1.8	8
10	Zinc nutrition in wheat-based cropping systems. Plant and Soil, 2018, 422, 283-315.	1.8	152
11	Quantitative trait loci associated with soybean seed weight and composition under different phosphorus levels. Journal of Integrative Plant Biology, 2018, 60, 232-241.	4.1	32
12	Pseudomonas-aided zinc application improves the productivity and biofortification of bread wheat. Crop and Pasture Science, 2018, 69, 659.	0.7	76
13	Micronutrient Malnutrition and Biofortification: Recent Advances and Future Perspectives. , 2018, , 225-243.		37
14	Effects of Agronomic Management and Climate on Leaf Phenolic Profiles, Disease Severity, and Grain Yield in Organic and Conventional Wheat Production Systems. Journal of Agricultural and Food Chemistry, 2018, 66, 10369-10379.	2.4	32
15	Growth performance and antioxidative response in bread and durum wheat plants grown with varied potassium treatments under ambient and elevated carbon dioxide. Environmental and Experimental Botany, 2017, 137, 26-35.	2.0	8
16	Potassium deficiency impedes elevated carbon dioxide-induced biomass enhancement in well watered or drought-stressed bread wheat. Journal of Plant Nutrition and Soil Science, 2017, 180, 474-481.	1.1	22
17	Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat. Scientific Reports, 2017, 7, 15662.	1.6	66
18	Elevated carbon dioxide exacerbates adverse effects of Mg deficiency in durum wheat. Plant and Soil, 2017, 410, 41-50.	1.8	16

#	Article	IF	CITATIONS
19	Elevated carbon dioxide ameliorates the effect of Zn deficiency and terminal drought on wheat grain yield but compromises nutritional quality. Plant and Soil, 2017, 411, 57-67.	1.8	24
20	Differences in grain zinc are not correlated with root uptake and grain translocation of zinc in wild emmer and durum wheat genotypes. Plant and Soil, 2017, 411, 69-79.	1.8	17
21	lodine biofortification of wheat, rice and maize through fertilizer strategy. Plant and Soil, 2017, 418, 319-335.	1.8	89
22	Combined Effects of Elevated Carbon Dioxide and K and Mg Deficiencies on Wheat Plants. Procedia Environmental Sciences, 2015, 29, 154-155.	1.3	0
23	High phosphorus supply reduced zinc concentration of wheat in native soil but not in autoclaved soil or nutrient solution. Plant and Soil, 2015, 393, 147-162.	1.8	112
24	Inclusion of urea in a <scp>⁵⁹FeEDTA</scp> solution stimulated leaf penetration and translocation of <scp>⁵⁹Fe</scp> within wheat plants. Physiologia Plantarum, 2014, 151, 348-357.	2.6	16
25	The influence of organic and conventional fertilisation and crop protection practices, preceding crop, harvest year and weather conditions on yield and quality of potato (Solanum tuberosum) in a long-term management trial. European Journal of Agronomy, 2013, 49, 83-92.	1.9	36
26	The effect of organic and conventional management on the yield and quality of wheat grown in a long-term field trial. European Journal of Agronomy, 2013, 51, 71-80.	1.9	63
27	Effect of Crop Protection and Fertilization Regimes Used in Organic and Conventional Production Systems on Feed Composition and Physiological Parameters in Rats. Journal of Agricultural and Food Chemistry, 2013, 61, 1017-1029.	2.4	28
28	Effect of Organic and Conventional Crop Rotation, Fertilization, and Crop Protection Practices on Metal Contents in Wheat (Triticum aestivum). Journal of Agricultural and Food Chemistry, 2011, 59, 4715-4724.	2.4	60
29	Effect of nitrogen on root release of phytosiderophores and root uptake of Fe(III)â€phytosiderophore in Feâ€deficient wheat plants. Physiologia Plantarum, 2011, 142, 287-296.	2.6	46
30	Accelerated Hydrolysis Method To Estimate the Amino Acid Content of Wheat (<i>Triticum) Tj ETQq0 0 0 rgBT /O 59, 2958-2965.</i>	verlock 10 2.4) Tf 50 307 1 14
31	Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant and Soil, 2011, 349, 215-225.	1.8	181
32	Expression and Cellular Localization of ZIP1 Transporter Under Zinc Deficiency in Wild Emmer Wheat. Plant Molecular Biology Reporter, 2011, 29, 582-596.	1.0	50
33	Genetic variation and environmental stability of grain mineral nutrient concentrations in Triticum dicoccoides under five environments. Euphytica, 2010, 171, 39-52.	0.6	106
34	Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. Journal of Cereal Science, 2010, 52, 342-349.	1.8	112
35	Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Annals of Botany, 2010, 105, 1211-1220.	1.4	132
36	Biofortification of Durum Wheat with Zinc Through Soil and Foliar Applications of Nitrogen. Cereal Chemistry, 2010, 87, 1-9.	1.1	257

#	Article	IF	CITATIONS
37	Biofortification and Localization of Zinc in Wheat Grain. Journal of Agricultural and Food Chemistry, 2010, 58, 9092-9102.	2.4	427
38	Turfgrass species response exposed to increasing rates of glyphosate application. European Journal of Agronomy, 2009, 31, 120-125.	1.9	27
39	Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. European Journal of Agronomy, 2009, 31, 114-119.	1.9	168
40	Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheatÂ×Âwild emmer wheat RIL population. Theoretical and Applied Genetics, 2009, 119, 353-369.	1.8	264
41	Differential expression of wheat transcriptomes in response to varying cadmium concentrations. Biologia Plantarum, 2008, 52, 703-708.	1.9	20
42	Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant and Soil, 2008, 306, 57-67.	1.8	181
43	Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots. New Phytologist, 2008, 177, 899-906.	3.5	45
44	Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiologia Plantarum, 2007, 129, 635-643.	2.6	244
45	Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain. Plant and Soil, 2007, 290, 323-331.	1.8	37
46	Iron and zinc grain density in common wheat grown in Central Asia. Euphytica, 2007, 155, 193-203.	0.6	284
47	Foliar-Applied Glyphosate Substantially Reduced Uptake and Transport of Iron and Manganese in Sunflower (Helianthus annuusL.) Plants. Journal of Agricultural and Food Chemistry, 2006, 54, 10019-10025.	2.4	131
48	Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum, 2006, 128, 144-152.	2.6	314
49	Reactive Oxygen Species Production in Wheat Roots Is Not Linked with Changes in H ⁺ Fluxes During Acidic and Aluminium Stresses. Plant Signaling and Behavior, 2006, 1, 70-75.	1.2	16
50	Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant and Soil, 2005, 269, 69-80.	1.8	171
51	Genotypic variation in common bean in response to zinc deficiency in calcareous soil. Plant and Soil, 2004, 259, 71-83.	1.8	59
52	Shoot biomass and zinc/cadmium uptake for hyperaccumulator and non-accumulator Thlaspi species in response to growth on a zinc-deficient calcareous soil. Plant Science, 2003, 164, 1095-1101.	1.7	56
53	Activities of Ironâ€Containing Enzymes in Leaves of Two Tomato Genotypes Differing in Their Resistance to Fe Chlorosis. Journal of Plant Nutrition, 2003, 26, 1997-2007.	0.9	20
54	Differences in Shoot Boron Concentrations, Leaf Symptoms, and Yield of Turkish Barley Cultivars Grown on Boronâ€Toxic Soil in Field. Journal of Plant Nutrition, 2002, 26, 1735-1747.	0.9	26

#	Article	IF	CITATIONS
55	TOLERANCE OF 65 DURUM WHEAT GENOTYPES TO ZINC DEFICIENCY IN A CALCAREOUS SOIL. Journal of Plant Nutrition, 2001, 24, 1831-1847.	0.9	34
56	Uptake and retranslocation of leafâ€applied cadmium (109Cd) in diploid, tetraploid and hexaploid wheats. Journal of Experimental Botany, 2000, 51, 221-226.	2.4	82
57	Grain yield, zinc efficiency and zinc concentration of wheat cultivars grown in a zinc-deficient calcareous soil in field and greenhouse. Field Crops Research, 1999, 63, 87-98.	2.3	97
58	Differences in Zinc Efficiency among and within Diploid, Tetraploid and Hexaploid Wheats. Annals of Botany, 1999, 84, 163-171.	1.4	48
59	Morphological and physiological differences in the response of cereals to zinc deficiency. Euphytica, 1998, 100, 349-357.	0.6	138
60	Concentration of zinc and activity of copper/zinc-superoxide dismutase in leaves of rye and wheat cultivars differing in sensitivity to zinc deficiency. Journal of Plant Physiology, 1997, 151, 91-95.	1.6	83
61	Zincâ€efficient wild grasses enhance release of phytosiderophores under zinc deficiency. Journal of Plant Nutrition, 1996, 19, 551-563.	0.9	82