
David Schlipf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2485580/publications.pdf Version: 2024-02-01

DAVID SCHLIDE

#	Article	IF	CITATIONS
1	Four-dimensional wind field generation for the aeroelastic simulation of wind turbines with lidars. Wind Energy Science, 2022, 7, 539-558.	3.3	3
2	The space-time structure of turbulence for lidar-assisted wind turbine control. Renewable Energy, 2022, 195, 293-310.	8.9	7
3	Updates on the OpenFAST Lidar Simulator. Journal of Physics: Conference Series, 2022, 2265, 042030.	0.4	6
4	Efficient multibody modeling of offshore wind turbines with flexible substructures. Journal of Physics: Conference Series, 2022, 2265, 042007.	0.4	0
5	A Spectral Model of Grid Frequency for Assessing the Impact of Inertia Response on Wind Turbine Dynamics. Energies, 2021, 14, 2492.	3.1	7
6	Lidar Wind Preview Quality Estimation for Wind Turbine Control. , 2021, , .		3
7	Parameterization of wind evolution using lidar. Wind Energy Science, 2021, 6, 61-91.	3.3	13
8	Robust gain scheduling baseline controller for floating offshore wind turbines. Wind Energy, 2020, 23, 17-30.	4.2	29
9	Modeling Uncertainties of Wind Field Reconstruction Using Lidar. Journal of Physics: Conference Series, 2020, 1452, 012088.	0.4	4
10	Lidar-based Estimation of Turbulence Intensity for Controller Scheduling. Journal of Physics: Conference Series, 2020, 1618, 032053.	0.4	5
11	IEA Wind Task 32 and Task 37: Optimizing Wind Turbines with Lidar-Assisted Control Using Systems Engineering. Journal of Physics: Conference Series, 2020, 1618, 042029.	0.4	6
12	Multibody modeling for concept-level floating offshore wind turbine design. Multibody System Dynamics, 2020, 49, 203-236.	2.7	21
13	Loop shaping based robust control for floating offshore wind turbines. Journal of Physics: Conference Series, 2020, 1618, 022066.	0.4	3
14	Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141, .	1.2	20
15	Minute-Scale Forecasting of Wind Power—Results from the Collaborative Workshop of IEA Wind Task 32 and 36. Energies, 2019, 12, 712.	3.1	48
16	Systems Engineering for Lidar-Assisted Control: A Sequential Approach. Journal of Physics: Conference Series, 2018, 1102, 012014.	0.4	12
17	Evaluation of control methods for floating offshore wind turbines. Journal of Physics: Conference Series, 2018, 1104, 012033.	0.4	16
18	A Comparison Between LIDAR-Based Feedforward and DAC for Control of Wind Turbines. , 2018, , .		3

DAVID SCHLIPF

#	Article	IF	CITATIONS
19	Investigation on the potential of individual blade control for lifetime extension. Journal of Physics: Conference Series, 2018, 1037, 032006.	0.4	8
20	Lidar-assisted Extreme Load Reduction by Multi-variable Protective Derating. Journal of Physics: Conference Series, 2018, 1037, 032025.	0.4	1
21	IEA Wind Task 32: Best Practices for the Certification of Lidar-Assisted Control Applications. Journal of Physics: Conference Series, 2018, 1102, 012010.	0.4	5
22	IEA Wind Task 32: Wind Lidar Identifying and Mitigating Barriers to the Adoption of Wind Lidar. Remote Sensing, 2018, 10, 406.	4.0	41
23	Optimizing Lidars for Wind Turbine Control Applications—Results from the IEA Wind Task 32 Workshop. Remote Sensing, 2018, 10, 863.	4.0	48
24	Control Design For Disturbance Rejection in Wind Turbines. , 2018, , .		1
25	Analysis of control-oriented wake modeling tools using lidar field results. Wind Energy Science, 2018, 3, 819-831.	3.3	76
26	Optimization of Floating Offshore Wind Turbine Platforms With a Self-Tuning Controller. , 2017, , .		8
27	Full-Scale Field Test of Wake Steering. Journal of Physics: Conference Series, 2017, 854, 012013.	0.4	37
28	â"‹â^ž controller design for closed-loop wake redirection. , 2017, , .		7
29	The Triple Spar Campaign: Implementation and Test of a Blade Pitch Controller on a Scaled Floating Wind Turbine Model. Energy Procedia, 2017, 137, 323-338.	1.8	33
30	Robust lidar-based closed-loop wake redirection for wind farm control. IFAC-PapersOnLine, 2017, 50, 4498-4503.	0.9	5
31	Lidar-based wake tracking for closed-loop wind farm control. Wind Energy Science, 2017, 2, 257-267.	3.3	15
32	Wind field reconstruction from nacelle-mounted lidar short-range measurements. Wind Energy Science, 2017, 2, 269-283.	3.3	43
33	Wind Turbine Controller to Mitigate Structural Loads on a Floating Wind Turbine Platform. , 2016, , .		16
34	Lidar-based wake tracking for closed-loop wind farm control. Journal of Physics: Conference Series, 2016, 753, 052009.	0.4	15
35	Turbulent Extreme Event Simulations for Lidar-Assisted Wind Turbine Control. Journal of Physics: Conference Series, 2016, 753, 052011.	0.4	6
36	Control design methods for floating wind turbines for optimal disturbance rejection. Journal of Physics: Conference Series, 2016, 753, 092006.	0.4	17

DAVID SCHLIPF

#	Article	IF	CITATIONS
37	Wake redirecting using feedback control to improve the power output of wind farms. , 2016, , .		13
38	Lidar-enhanced wind turbine control: Past, present, and future. , 2016, , .		34
39	Prospects of multivariable feedforward control of wind turbines using lidar. , 2016, , .		1
40	Parametric Wave Excitation Model for Floating Wind Turbines. Energy Procedia, 2016, 94, 290-305.	1.8	12
41	Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy. Wind Energy Science, 2016, 1, 1-39.	3.3	162
42	Full-field assessment of wind turbine near-wake deviation in relation to yaw misalignment. Wind Energy Science, 2016, 1, 41-53.	3.3	22
43	Prospects of Linear Model Predictive Control on a 10 MW Floating Wind Turbine. , 2015, , .		8
44	Detection of Wind Evolution and Lidar Trajectory Optimization for Lidar-Assisted Wind Turbine Control. Meteorologische Zeitschrift, 2015, 24, 565-579.	1.0	20
45	Nonlinear model predictive controller design for extreme load mitigation in transition operation region in wind turbines. , 2015, , .		10
46	Optimization of a feed-forward controller using a CW-lidar system on the CART3. , 2015, , .		13
47	Collective Pitch Feedforward Control of Floating Wind Turbines Using Lidar. Journal of Ocean and Wind Energy, 2015, 2, .	0.7	28
48	Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data. Journal of Physics: Conference Series, 2014, 524, 012005.	0.4	21
49	Power Performance Measurements of the NREL CART-2 Wind Turbine Using a Nacelle-Based Lidar Scanner. Journal of Atmospheric and Oceanic Technology, 2014, 31, 2029-2034.	1.3	9
50	Integrated Optimization of Floating Wind Turbine Systems. , 2014, , .		18
51	Importance of lidar measurement timing accuracy for wind turbine control. , 2014, , .		13
52	Nonlinear model predictive control of floating wind turbines with individual pitch control. , 2014, , .		47
53	Field Testing of Feedforward Collective Pitch Control on the CART2 Using a Nacelle-Based Lidar Scanner. Journal of Physics: Conference Series, 2014, 555, 012090.	0.4	38
54	Comparison of linear and nonlinear model predictive control of wind turbines using LIDAR. , 2014, , .		19

DAVID SCHLIPF

#	Article	IF	CITATIONS
55	Efficient critical design load case identification for floating offshore wind turbines with a reduced nonlinear model. Journal of Physics: Conference Series, 2014, 555, 012069.	0.4	14
56	Flatness-based Feedforward Control of Wind Turbines Using Lidar. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 5820-5825.	0.4	8
57	\$ell_{1}\$-Optimal Control of Large Wind Turbines. IEEE Transactions on Control Systems Technology, 2013, 21, 1079-1089.	5.2	27
58	Nonlinear model predictive control of wind turbines using LIDAR. Wind Energy, 2013, 16, 1107-1129.	4.2	259
59	Adaptive Vorsteuerung für Windenergieanlagen. Automatisierungstechnik, 2013, 61, 329-338.	0.8	6
60	Field Testing LIDAR-Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine. , 2013, , .		40
61	Model of the Correlation between Lidar Systems and Wind Turbines for Lidar-Assisted Control. Journal of Atmospheric and Oceanic Technology, 2013, 30, 2233-2240.	1.3	37
62	Direct Speed Control using LIDAR and turbine data. , 2013, , .		9
63	Comparison of Two Independent Lidar-Based Pitch Control Designs. , 2012, , .		16
64	Comparison of feedforward and model predictive control of wind turbines using LIDAR. , 2012, , .		18
65	Advanced controller research for multiâ€MW wind turbines in the UPWIND project. Wind Energy, 2012, 15, 119-145.	4.2	64
66	Arrangements for enhanced measurements of a large turbine near-wake using LiDAR from the nacelle. IOP Conference Series: Earth and Environmental Science, 2008, 1, 012060.	0.3	1