Carlos Mateos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2485471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2022, 26, 1-9.	2.7	1
2	Continuous stirred-tank reactor cascade platform for self-optimization of reactions involving solids. Reaction Chemistry and Engineering, 2022, 7, 1315-1327.	3.7	22
3	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2022, 26, 1010-1018.	2.7	0
4	Accelerated and Scalable C(sp ³)–H Amination via Decatungstate Photocatalysis Using a Flow Photoreactor Equipped with High-Intensity LEDs. ACS Central Science, 2022, 8, 51-56.	11.3	35
5	Self-Optimization of Continuous Flow Electrochemical Synthesis Using Fourier Transform Infrared Spectroscopy and Gas Chromatography. Applied Spectroscopy, 2022, 76, 38-50.	2.2	9
6	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2022, 26, 1343-1350.	2.7	0
7	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2022, 26, 2111-2119.	2.7	0
8	4-Cyano-3-oxotetrahydrothiophene (c-THT): An Ideal Acrylonitrile Anion Equivalent. SynOpen, 2021, 05, 25-28.	1.7	1
9	Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology. ACS Central Science, 2021, 7, 1126-1134.	11.3	52
10	Decatungstateâ€Mediated C(sp ³)–H Heteroarylation via Radicalâ€Polar Crossover in Batch and Flow. Angewandte Chemie - International Edition, 2021, 60, 17893-17897.	13.8	56
11	Synthesis of Enantiopure Unnatural Amino Acids by Metallaphotoredox Catalysis. Organic Process Research and Development, 2021, 25, 1966-1973.	2.7	30
12	<i>N</i> -Chloroamines as substrates for metal-free photochemical atom-transfer radical addition reactions in continuous flow. Reaction Chemistry and Engineering, 2021, 6, 2434-2441.	3.7	10
13	Continuous photochemical benzylic bromination using <i>in situ</i> generated Br ₂ : process intensification towards optimal PMI and throughput. Green Chemistry, 2020, 22, 448-454.	9.0	41
14	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2020, 24, 1-11.	2.7	0
15	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2020, 24, 1549-1557.	2.7	0
16	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2020, 24, 874-883.	2.7	0
17	Synthesis, Optimization, and Large-Scale Preparation of the Low-Dose Central Nervous System-Penetrant BACE1 Inhibitor LY3202626 via a [3 + 2] Nitrone Cycloaddition. Organic Process Research and Development, 2020, 24, 306-314.	2.7	8
18	Implementing Hydrogen Atom Transfer (HAT) Catalysis for Rapid and Selective Reductive Photoredox Transformations in Continuous Flow. European Journal of Organic Chemistry, 2019, 2019, 5807-5811.	2.4	20

CARLOS MATEOS

#	Article	IF	CITATIONS
19	Lilly Research Award Program (LRAP): A Successful Academia–Industry Partnership Model in the Context of Flow Chemistry for Drug Discovery. Chimia, 2019, 73, 803.	0.6	1
20	Fast continuous alcohol amination employing a hydrogen borrowing protocol. Green Chemistry, 2019, 21, 59-63.	9.0	31
21	Photochemical benzylic bromination in continuous flow using BrCCl3 and its application to telescoped p-methoxybenzyl protection. Organic and Biomolecular Chemistry, 2019, 17, 1384-1388.	2.8	13
22	Automated platforms for reaction self-optimization in flow. Reaction Chemistry and Engineering, 2019, 4, 1536-1544.	3.7	101
23	Finding the Perfect Match: A Combined Computational and Experimental Study toward Efficient and Scalable Photosensitized [2 + 2] Cycloadditions in Flow. Organic Process Research and Development, 2019, 23, 78-87.	2.7	52
24	Discovery of chiral dihydropyridopyrimidinones as potent, selective and orally bioavailable inhibitors of AKT. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1887-1891.	2.2	8
25	Metallaphotoredox-Catalyzed Cross-Electrophile C _{sp} ³ –C _{sp} ³ Coupling of Aliphatic Bromides. Journal of the American Chemical Society, 2018, 140, 17433-17438.	13.7	139
26	Continuous Flow Photochemical Benzylic Bromination of a Key Intermediate in the Synthesis of a 2-Oxazolidinone. ChemPhotoChem, 2018, 2, 906-912.	3.0	17
27	Electrochemical Deprotection of <i>para</i> -Methoxybenzyl Ethers in a Flow Electrolysis Cell. Organic Letters, 2017, 19, 2050-2053.	4.6	39
28	Rapid Continuous Ruthenium-Catalysed Transfer Hydrogenation of Aromatic Nitriles to Primary Amines. Synlett, 2017, 28, 2855-2858.	1.8	8
29	Chemoselective Continuous Ru-Catalyzed Hydrogen-Transfer Oppenauer-Type Oxidation of Secondary Alcohols. Organic Process Research and Development, 2017, 21, 1419-1422.	2.7	23
30	Lightâ€induced CH Arylation of (Hetero)arenes by In Situ Generated Diazo Anhydrides. Chemistry - A European Journal, 2015, 21, 12894-12898.	3.3	47
31	Large-Scale Continuous Flow Transformation of Oximes into Fused-Bicyclic Isoxazolidines: An Example of Process Intensification. Organic Process Research and Development, 2015, 19, 347-351.	2.7	16
32	Synthesis of an ORL-1 Receptor Antagonist via a Radical Bromination and Deoxyfluorination to Afford a <i>gem</i> -Difluorospirocycle. Organic Process Research and Development, 2015, 19, 1568-1575.	2.7	12
33	Green and scalable procedure for extremely fast ligandless Suzuki–Miyaura cross-coupling reactions in aqueous IPA using solid-supported Pd in continuous flow. Tetrahedron Letters, 2014, 55, 3701-3705.	1.4	32
34	Discovery of a Novel Series of Orally Active Nociceptin/Orphanin FQ (NOP) Receptor Antagonists Based on a Dihydrospiro(piperidine-4,7′-thieno[2,3- <i>c</i>]pyran) Scaffold. Journal of Medicinal Chemistry, 2014, 57, 3418-3429.	6.4	51
35	A Scalable Procedure for Light-Induced Benzylic Brominations in Continuous Flow. Journal of Organic Chemistry, 2014, 79, 223-229.	3.2	91
36	A Continuous-Flow Protocol for Light-Induced Benzylic Fluorinations. Journal of Organic Chemistry, 2014, 79, 8486-8490.	3.2	91

CARLOS MATEOS

#	Article	IF	CITATIONS
37	Continuous Flow α-Trifluoromethylation of Ketones by Metal-Free Visible Light Photoredox Catalysis. Organic Letters, 2014, 16, 896-899.	4.6	141
38	Efficient and scalable synthesis of ketones via nucleophilic Grignard addition to nitriles using continuous flow chemistry. Tetrahedron Letters, 2013, 54, 2226-2230.	1.4	26
39	Regioselective Palladium-Catalyzed Arylation of 4-Chloropyrazoles. Organic Letters, 2010, 12, 4924-4927.	4.6	57
40	Preparation, Use, and Safety of <i>O</i> -Mesitylenesulfonylhydroxylamine. Organic Process Research and Development, 2009, 13, 263-267.	2.7	74
41	A Straightforward and Versatile Synthetic Approach to 1-Azabicyclic Alkaloids. Journal of Organic Chemistry, 2004, 69, 7114-7122.	3.2	19
42	A Concise and Convergent Route to 5,8-Disubstituted Indolizidine and 1,4-Disubstituted Quinolizidine Ring Cores by Diastereoselective Aza-Dielsâ^'Alder Reaction. Organic Letters, 2002, 4, 1971-1974.	4.6	37
43	Solid-Phase Synthesis of Polysubstituted Piperidines by Imino-Dielsâ ^{°°} Alder Cycloaddition of 2-Amino-1,3-butadienes with Solid-Supported Imines. Organic Letters, 2002, 4, 3667-3670.	4.6	17