
Bahareh Shirinfar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2485220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective Fluorescent Detection of RNA in Living Cells by Using Imidazolium-Based Cyclophane. Journal of the American Chemical Society, 2013, 135, 90-93.	6.6	95
2	A highly selective fluorescent chemosensor for guanosine-5â€2-triphosphate via excimer formation in aqueous solution of physiological pH. Chemical Communications, 2012, 48, 2662.	2.2	67
3	A Green Approach: Vicinal Oxidative Electrochemical Alkene Difunctionalization. ChemElectroChem, 2019, 6, 1300-1315.	1.7	61
4	Precise Tuning of Cationic Cyclophanes toward Highly Selective Fluorogenic Recognition of Specific Biophosphate Anions. Organic Letters, 2014, 16, 2150-2153.	2.4	49
5	Organic electrosynthesis: electrochemical alkyne functionalization. Catalysis Science and Technology, 2019, 9, 5868-5881.	2.1	49
6	Electrochemical Phosphorylation of Organic Molecules. Chemical Record, 2020, 20, 1530-1552.	2.9	35
7	Synthesis, design and sensing applications of nanostructured ceria-based materials. Analyst, The, 2018, 143, 5610-5628.	1.7	27
8	Electrochemical Sensing of Ascorbic Acid, Hydrogen Peroxide and Glucose by Bimetallic (Fe, Ni)â^'CNTs Composite Modified Electrode. Electroanalysis, 2019, 31, 851-857.	1.5	16
9	Facile Synthesis of a Selective Biomolecule Chemosensor and Fabrication of Its Highly Fluorescent Graphene Complex. Journal of Physical Chemistry B, 2017, 121, 5007-5016.	1.2	11
10	A new selective â€~turn-on' small fluorescent cationic probe for recognition of RNA in cells. Supramolecular Chemistry, 2015, 27, 478-483.	1.5	9
11	Renewable Electricity Enables Green Routes to Fine Chemicals and Pharmaceuticals. Chemical Record, 2022, 22, e202100296.	2.9	9
12	Halides with Fifteen Aliphatic C–H···Anion Interaction Sites. Scientific Reports, 2016, 6, 30123.	1.6	7
13	Charged probes: turn-on selective fluorescence for RNA. Organic and Biomolecular Chemistry, 2018, 16, 164-168.	1.5	7
14	Radical Diazidation of Alkenes: Cu/Fe/Mn Catalysis and Electrochemical Support. ChemElectroChem, 2018, 5, 1245-1248.	1.7	6
15	Diabetes Treatment: Selective Synthetic Receptor for Glucose. ChemistryOpen, 2019, 8, 84-86.	0.9	5
16	A Green Approach: Vicinal Oxidative Electrochemical Alkene Difunctionalization. ChemElectroChem, 2019, 6, 1254-1254.	1.7	2
17	Chemical Glycosylations for the Synthesis of Building Units of Postâ€Translational Modifications. Helvetica Chimica Acta, 2018, 101, e1700226.	1.0	1
18	Easy Access to Crystalline Indolines <i>via</i> Hydrogen Bond Transfer. Journal of Heterocyclic Chemistry, 2019, 56, 1388-1392.	1.4	1