List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2484835/publications.pdf Version: 2024-02-01



CAOSHILL

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | KAICD: A knowledge attention-based deep learning framework for automatic ICD coding.<br>Neurocomputing, 2022, 469, 376-383.                                                                          | 5.9  | 19        |
| 2  | NetAUC: A network-based multi-biomarker identification method by AUC optimization. Methods, 2022, 198, 56-64.                                                                                        | 3.8  | 5         |
| 3  | DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding. Briefings in Bioinformatics, 2022, 23, .                           | 6.5  | 33        |
| 4  | Biomedical data, computational methods and tools for evaluating disease–disease associations.<br>Briefings in Bioinformatics, 2022, 23, .                                                            | 6.5  | 12        |
| 5  | Bacon: a comprehensive computational benchmarking framework for evaluating targeted chromatin conformation capture-specific methodologies. Genome Biology, 2022, 23, 30.                             | 8.8  | 7         |
| 6  | BACPI: a bi-directional attention neural network for compound–protein interaction and binding affinity prediction. Bioinformatics, 2022, 38, 1995-2002.                                              | 4.1  | 29        |
| 7  | Guest Editors' Introduction to the Special Section on Bioinformatics Research and Applications.<br>IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 166-167.             | 3.0  | 0         |
| 8  | DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning. Briefings in Bioinformatics, 2022, 23, .                        | 6.5  | 28        |
| 9  | SEPA: signaling entropy-based algorithm to evaluate personalized pathway activation for survival analysis on pan-cancer data. Bioinformatics, 2022, 38, 2536-2543.                                   | 4.1  | 3         |
| 10 | BridgeDPI: a novel Graph Neural Network for predicting drug–protein interactions. Bioinformatics,<br>2022, 38, 2571-2578.                                                                            | 4.1  | 31        |
| 11 | HyMM: hybrid method for disease-gene prediction by integrating multiscale module structure.<br>Briefings in Bioinformatics, 2022, 23, .                                                              | 6.5  | 4         |
| 12 | EPIXplorer: A web server for prediction, analysis and visualization of enhancer-promoter interactions. Nucleic Acids Research, 2022, 50, W290-W297.                                                  | 14.5 | 4         |
| 13 | Temporal-Spatial Analysis of the Essentiality of Hub Proteins in Protein-Protein Interaction Networks.<br>IEEE Transactions on Network Science and Engineering, 2022, 9, 3504-3514.                  | 6.4  | 3         |
| 14 | DRCNNTLe: A deep recurrent convolutional neural network with transfer learning through pre-trained embeddings for automated ICD coding. Methods, 2022, 205, 97-105.                                  | 3.8  | 3         |
| 15 | A deep matrix factorization based approach for single-cell RNA-seq data clustering. Methods, 2022,<br>205, 114-122.                                                                                  | 3.8  | 4         |
| 16 | FUNMarker: Fusion Network-Based Method to Identify Prognostic and Heterogeneous Breast Cancer<br>Biomarkers. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2483-2491. | 3.0  | 10        |
| 17 | A Deep Learning Framework for Gene Ontology Annotations With Sequence- and Network-Based<br>Information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2208-2217.     | 3.0  | 21        |
| 18 | DMFLDA: A Deep Learning Framework for Predicting IncRNA–Disease Associations. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2021, 18, 2353-2363.                             | 3.0  | 38        |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | PrGeFNE: Predicting disease-related genes by fast network embedding. Methods, 2021, 192, 3-12.                                                                                                            | 3.8  | 25        |
| 20 | Deep Matrix Factorization Improves Prediction of Human CircRNA-Disease Associations. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 891-899.                                                | 6.3  | 43        |
| 21 | An Ensemble Method to Reconstruct Gene Regulatory Networks Based on Multivariate Adaptive<br>Regression Splines. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18,<br>347-354. | 3.0  | 17        |
| 22 | DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 575-582.                                   | 3.0  | 67        |
| 23 | Deletion Detection Method Using the Distribution of Insert Size and a Precise Alignment Strategy.<br>IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1070-1081.              | 3.0  | 0         |
| 24 | A Novel Drug Repositioning Approach Based on Collaborative Metric Learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 463-471.                                         | 3.0  | 11        |
| 25 | Research on the Auxiliary Classification and Diagnosis of Lung Cancer Subtypes Based on<br>Histopathological Images. IEEE Access, 2021, 9, 53687-53707.                                                   | 4.2  | 32        |
| 26 | DPCMNE: detecting protein complexes from protein-protein interaction networks via multi-level network embedding. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.        | 3.0  | 19        |
| 27 | SSRE: Cell Type Detection Based on Sparse Subspace Representation and Similarity Enhancement.<br>Genomics, Proteomics and Bioinformatics, 2021, 19, 282-291.                                              | 6.9  | 21        |
| 28 | A polygenic methylation prediction model associated with response to chemotherapy in epithelial ovarian cancer. Molecular Therapy - Oncolytics, 2021, 20, 545-555.                                        | 4.4  | 8         |
| 29 | DeepPPF: A deep learning framework for predicting protein family. Neurocomputing, 2021, 428, 19-29.                                                                                                       | 5.9  | 16        |
| 30 | DeepDTAF: a deep learning method to predict protein–ligand binding affinity. Briefings in<br>Bioinformatics, 2021, 22, .                                                                                  | 6.5  | 61        |
| 31 | NIDM: network impulsive dynamics on multiplex biological network for disease-gene prediction.<br>Briefings in Bioinformatics, 2021, 22, .                                                                 | 6.5  | 19        |
| 32 | Essential Protein Prediction Based on node2vec and XGBoost. Journal of Computational Biology, 2021, 28, 687-700.                                                                                          | 1.6  | 17        |
| 33 | A sensitive repeat identification framework based on short and long reads. Nucleic Acids Research, 2021, 49, e100-e100.                                                                                   | 14.5 | 10        |
| 34 | Protein interaction networks: centrality, modularity, dynamics, and applications. Frontiers of Computer Science, 2021, 15, 1.                                                                             | 2.4  | 24        |
| 35 | Key residues influencing binding affinities of 2019-nCoV with ACE2 in different species. Briefings in Bioinformatics, 2021, 22, 963-975.                                                                  | 6.5  | 14        |
| 36 | Biomedical data and computational models for drug repositioning: a comprehensive review. Briefings in Bioinformatics, 2021, 22, 1604-1619.                                                                | 6.5  | 110       |

| #  | Article                                                                                                                                                                                                           | lF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Improving circRNA–disease association prediction by sequence and ontology representations with convolutional and recurrent neural networks. Bioinformatics, 2021, 36, 5656-5664.                                  | 4.1 | 21        |
| 38 | Overlapping Protein Complexes Detection Based on Multi-level Topological Similarities. Lecture Notes in Computer Science, 2021, , 215-226.                                                                        | 1.3 | 1         |
| 39 | Improving human essential protein prediction using only protein sequences via ensemble learning. , $2021,$ , .                                                                                                    |     | 2         |
| 40 | A Hybrid Pooling Based Deep Learning Framework For Automated ICD Coding. , 2021, , .                                                                                                                              |     | 3         |
| 41 | DeepCI: a deep learning based clustering method for single cell RNA-seq data. , 2021, , .                                                                                                                         |     | 3         |
| 42 | Protein–protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics, 2020, 36, 1114-1120.                                                           | 4.1 | 157       |
| 43 | GapReduce: A Gap Filling Algorithm Based on Partitioned Read Sets. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 877-886.                                                          | 3.0 | 11        |
| 44 | Identification of Protein Complexes by Using a Spatial and Temporal Active Protein Interaction<br>Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 817-827.                  | 3.0 | 24        |
| 45 | MEC: Misassembly Error Correction in Contigs based on Distribution of Paired-End Reads and<br>Statistics of GC-contents. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020,<br>17, 847-857. | 3.0 | 17        |
| 46 | miRTRS: A Recommendation Algorithm for Predicting miRNA Targets. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 1032-1041.                                                          | 3.0 | 10        |
| 47 | Network-based methods for predicting essential genes or proteins: a survey. Briefings in<br>Bioinformatics, 2020, 21, 566-583.                                                                                    | 6.5 | 90        |
| 48 | An Efficient Trimming Algorithm based on Multi-Feature Fusion Scoring Model for NGS Data. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2020, 17, 728-738.                                | 3.0 | 14        |
| 49 | Improving de novo Assembly Based on Read Classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 177-188.                                                                    | 3.0 | 19        |
| 50 | A disease inference method based on symptom extraction and bidirectional Long Short Term Memory networks. Methods, 2020, 173, 75-82.                                                                              | 3.8 | 14        |
| 51 | NIMCE: a gene regulatory network inference approach based on multi time delays causal entropy.<br>IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, PP, 1-1.                               | 3.0 | 2         |
| 52 | MADA: a web service for analysing DNA methylation array data. BMC Bioinformatics, 2020, 21, 403.                                                                                                                  | 2.6 | 2         |
| 53 | CircR2Cancer: a manually curated database of associations between circRNAs and cancers. Database:<br>the Journal of Biological Databases and Curation, 2020, 2020, .                                              | 3.0 | 27        |
| 54 | Computer-Aided Diagnosis and Staging of Pancreatic Cancer Based on CT Images. IEEE Access, 2020, 8, 141705-141718.                                                                                                | 4.2 | 10        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | NEDD: a network embedding based method for predicting drug-disease associations. BMC<br>Bioinformatics, 2020, 21, 387.                                                                                  | 2.6 | 23        |
| 56 | miRTMC: A miRNA Target Prediction Method Based on Matrix Completion Algorithm. IEEE Journal of<br>Biomedical and Health Informatics, 2020, 24, 3630-3641.                                               | 6.3 | 8         |
| 57 | An Adaptive Sparse Subspace Clustering for Cell Type Identification. Frontiers in Genetics, 2020, 11, 407.                                                                                              | 2.3 | 18        |
| 58 | SDLDA: IncRNA-disease association prediction based on singular value decomposition and deep learning. Methods, 2020, 179, 73-80.                                                                        | 3.8 | 61        |
| 59 | Predicting Human IncRNA-Disease Associations Based on Geometric Matrix Completion. IEEE Journal of<br>Biomedical and Health Informatics, 2020, 24, 2420-2429.                                           | 6.3 | 32        |
| 60 | NetEPD: A network-based essential protein discovery platform. Tsinghua Science and Technology, 2020, 25, 542-552.                                                                                       | 6.1 | 15        |
| 61 | Ess-NEXG: Predict Essential Proteins by Constructing a Weighted Protein Interaction Network Based on Node Embedding and XGBoost. Lecture Notes in Computer Science, 2020, , 95-104.                     | 1.3 | 4         |
| 62 | PROBselect: accurate prediction of protein-binding residues from proteins sequences via dynamic predictorÂselection. Bioinformatics, 2020, 36, i735-i744.                                               | 4.1 | 19        |
| 63 | SPOC: Identification of Drug Targets in Biological Networks via Set Preference Output Control.<br>Lecture Notes in Computer Science, 2020, , 26-37.                                                     | 1.3 | 0         |
| 64 | Automatic ICD-9 coding via deep transfer learning. Neurocomputing, 2019, 324, 43-50.                                                                                                                    | 5.9 | 79        |
| 65 | A Novel Scaffolding Algorithm Based on Contig Error Correction and Path Extension. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2019, 16, 764-773.                             | 3.0 | 8         |
| 66 | A novel extended Pareto Optimality Consensus model for predicting essential proteins. Journal of<br>Theoretical Biology, 2019, 480, 141-149.                                                            | 1.7 | 9         |
| 67 | EPGA-SC : A framework for de novo assembly of single-cell sequencing reads. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 18, 1-1.                                           | 3.0 | 3         |
| 68 | A Novel Coreâ€Attachment–Based Method to Identify Dynamic Protein Complexes Based on Gene<br>Expression Profiles and PPI Networks. Proteomics, 2019, 19, e1800129.                                      | 2.2 | 9         |
| 69 | Decoding the Structural Keywords in Protein Structure Universe. Journal of Computer Science and<br>Technology, 2019, 34, 3-15.                                                                          | 1.5 | 4         |
| 70 | Controllability and Its Applications to Biological Networks. Journal of Computer Science and Technology, 2019, 34, 16-34.                                                                               | 1.5 | 25        |
| 71 | A deep learning framework for identifying essential proteins by integrating multiple types of biological information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 18, 1-1. | 3.0 | 65        |
| 72 | Current challenges and solutions of <i><b>de novo</b></i> assembly. Quantitative Biology, 2019, 7, 90-109.                                                                                              | 0.5 | 46        |

| #  | Article                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | SinNLRR: a robust subspace clustering method for cell type detection by non-negative and low-rank representation. Bioinformatics, 2019, 35, 3642-3650.     | 4.1 | 112       |
| 74 | A novel method of gene regulatory network structure inference from gene knock-out expression data. Tsinghua Science and Technology, 2019, 24, 446-455.     | 6.1 | 17        |
| 75 | Identifying multi-scale communities in networks by asymptotic surprise. Journal of Statistical<br>Mechanics: Theory and Experiment, 2019, 2019, 033403.    | 2.3 | 16        |
| 76 | DeepFunc: A Deep Learning Framework for Accurate Prediction of Protein Functions from Protein Sequences and Interactions. Proteomics, 2019, 19, e1900019.  | 2.2 | 72        |
| 77 | Automatic ICD code assignment of Chinese clinical notes based on multilayer attention BiRNN. Journal of Biomedical Informatics, 2019, 91, 103114.          | 4.3 | 47        |
| 78 | Tentative diagnosis prediction via deep understanding of patient narratives. , 2019, , .                                                                   |     | 3         |
| 79 | DoRC: Discovery of rare cells from ultra-large scRNA-seq data. , 2019, , .                                                                                 |     | 4         |
| 80 | HNEDTI: Prediction of drug-target interaction based on heterogeneous network embedding. , 2019, , .                                                        |     | 7         |
| 81 | LncRNA–disease association prediction through combining linear and non-linear features with matrix factorization and deep learning techniques. , 2019, , . |     | 7         |
| 82 | Detecting protein complex based on hierarchical compressing network embedding. , 2019, , .                                                                 |     | 7         |
| 83 | DualRank: multiplex network-based dual ranking for heterogeneous complex disease analysis. , 2019, , .                                                     |     | 1         |
| 84 | D3GRN: a data driven dynamic network construction method to infer gene regulatory networks. BMC<br>Genomics, 2019, 20, 929.                                | 2.8 | 6         |
| 85 | CSA: a web service for the complete process of ChIP-Seq analysis. BMC Bioinformatics, 2019, 20, 515.                                                       | 2.6 | 2         |
| 86 | DeepEP: a deep learning framework for identifying essential proteins. BMC Bioinformatics, 2019, 20, 506.                                                   | 2.6 | 40        |
| 87 | SCOP: a novel scaffolding algorithm based on contig classification and optimization. Bioinformatics, 2019, 35, 1142-1150.                                  | 4.1 | 13        |
| 88 | BiXGBoost: a scalable, flexible boosting-based method for reconstructing gene regulatory networks.<br>Bioinformatics, 2019, 35, 1893-1900.                 | 4.1 | 59        |
| 89 | Control principles for complex biological networks. Briefings in Bioinformatics, 2019, 20, 2253-2266.                                                      | 6.5 | 46        |
| 90 | Automated ICD-9 Coding via A Deep Learning Approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1193-1202.               | 3.0 | 78        |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Computational Drug Repositioning with Random Walk on a Heterogeneous Network. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2019, 16, 1890-1900.                 | 3.0 | 47        |
| 92  | MGT-SM: A Method for Constructing Cellular Signal Transduction Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 417-424.                           | 3.0 | 16        |
| 93  | Construction of Refined Protein Interaction Network for Predicting Essential Proteins. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2019, 16, 1386-1397.        | 3.0 | 44        |
| 94  | Evaluation of Pathway Activation for a Single Sample Toward Inflammatory Bowel Disease<br>Classification. Frontiers in Genetics, 2019, 10, 1401.                                         | 2.3 | 9         |
| 95  | MAC: Merging Assemblies by Using Adjacency Algebraic Model and Classification. Frontiers in Genetics, 2019, 10, 1396.                                                                    | 2.3 | 10        |
| 96  | Identification of Prognostic and Heterogeneous Breast Cancer Biomarkers Based on Fusion Network<br>and Multiple Scoring Strategies. Lecture Notes in Computer Science, 2019, , 529-534.  | 1.3 | 2         |
| 97  | Applications of deep learning to MRI images: A survey. Big Data Mining and Analytics, 2018, 1, 1-18.                                                                                     | 8.9 | 195       |
| 98  | CytoCtrlAnalyser: a Cytoscape app for biomolecular network controllability analysis. Bioinformatics, 2018, 34, 1428-1430.                                                                | 4.1 | 17        |
| 99  | Computational drug repositioning using low-rank matrix approximation and randomized algorithms.<br>Bioinformatics, 2018, 34, 1904-1912.                                                  | 4.1 | 183       |
| 100 | DyNetViewer: a Cytoscape app for dynamic network construction, analysis and visualization.<br>Bioinformatics, 2018, 34, 1597-1599.                                                       | 4.1 | 27        |
| 101 | Prediction of lncRNA–disease associations based on inductive matrix completion. Bioinformatics, 2018, 34, 3357-3364.                                                                     | 4.1 | 227       |
| 102 | Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information. Journal of Theoretical Biology, 2018, 447, 65-73.  | 1.7 | 46        |
| 103 | Predicting MicroRNA-Disease Associations Based on Improved MicroRNA and Disease Similarities.<br>IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1774-1782. | 3.0 | 116       |
| 104 | Classification of Alzheimer's Disease Using Whole Brain Hierarchical Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 624-632.                      | 3.0 | 142       |
| 105 | A Deep Learning Framework for Identifying Essential Proteins Based on Protein-Protein Interaction<br>Network and Gene Expression Data. , 2018, , .                                       |     | 12        |
| 106 | United neighborhood closeness centrality and orthology for predicting essential proteins. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2018, 17, 1-1.           | 3.0 | 50        |
| 107 | Disease Inference with Symptom Extraction and Bidirectional Recurrent Neural Network. , 2018, , .                                                                                        |     | 7         |
| 108 | An interpretable boosting model to predict side effects of analgesics for osteoarthritis. BMC Systems Biology, 2018, 12, 105.                                                            | 3.0 | 35        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Biomolecular Networks for Complex Diseases. Complexity, 2018, 2018, 1-3.                                                                                                                                             | 1.6 | 4         |
| 110 | A survey of matrix completion methods for recommendation systems. Big Data Mining and Analytics, 2018, 1, 308-323.                                                                                                   | 8.9 | 92        |
| 111 | LDAP: a web server for IncRNA-disease association prediction. Bioinformatics, 2017, 33, 458-460.                                                                                                                     | 4.1 | 182       |
| 112 | United Complex Centrality for Identification of Essential Proteins from PPI Networks. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2017, 14, 370-380.                                       | 3.0 | 80        |
| 113 | Predicting Protein Functions by Using Unbalanced Random Walk Algorithm on Three Biological<br>Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 360-369.                        | 3.0 | 45        |
| 114 | ISEA: Iterative Seed-Extension Algorithm for De Novo Assembly Using Paired-End Information and<br>Insert Size Distribution. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14,<br>916-925. | 3.0 | 20        |
| 115 | PECC: Correcting contigs based on paired-end read distribution. Computational Biology and Chemistry, 2017, 69, 178-184.                                                                                              | 2.3 | 17        |
| 116 | Biomolecular Network Controllability With Drug Binding Information. IEEE Transactions on Nanobioscience, 2017, 16, 326-332.                                                                                          | 3.3 | 13        |
| 117 | Classification of Schizophrenia Based on Individual Hierarchical Brain Networks Constructed From<br>Structural MRI Images. IEEE Transactions on Nanobioscience, 2017, 16, 600-608.                                   | 3.3 | 38        |
| 118 | Protein Inference from the Integration of Tandem MS Data and Interactome Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 1399-1409.                                           | 3.0 | 3         |
| 119 | BOSS: a novel scaffolding algorithm based on an optimized scaffold graph. Bioinformatics, 2017, 33, 169-176.                                                                                                         | 4.1 | 33        |
| 120 | MEC: Misassembly error correction in contigs using a combination of paired-end reads and GC-contents. , 2017, , .                                                                                                    |     | 2         |
| 121 | CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks.<br>International Journal of Molecular Sciences, 2017, 18, 1880.                                                       | 4.1 | 90        |
| 122 | Complex Brain Network Analysis and Its Applications to Brain Disorders: A Survey. Complexity, 2017, 2017, 1-27.                                                                                                      | 1.6 | 90        |
| 123 | VAliBS: a visual aligner for bisulfite sequences. BMC Bioinformatics, 2017, 18, 410.                                                                                                                                 | 2.6 | 2         |
| 124 | LSLS: A Novel Scaffolding Method Based on Path Extension. Lecture Notes in Computer Science, 2017, , 428-438.                                                                                                        | 1.3 | 1         |
| 125 | Construction of the spatial and temporal active protein interaction network for identifying protein complexes. , 2016, , .                                                                                           |     | 5         |
| 126 | Predicting essential proteins based on subcellular localization, orthology and PPI networks. BMC<br>Bioinformatics, 2016, 17, 279.                                                                                   | 2.6 | 66        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A reliable neighbor-based method for identifying essential proteins by integrating gene expressions,<br>orthology, and subcellular localization information. Tsinghua Science and Technology, 2016, 21,<br>668-677. | 6.1 | 25        |
| 128 | The MSS of complex networks with centrality based preference and its application to biomolecular networks. , 2016, , .                                                                                              |     | 3         |
| 129 | Predicting microRNA-environmental factor interactions based on bi-random walk and multi-label learning. , 2016, , .                                                                                                 |     | 3         |
| 130 | Identifying Essential Proteins by Purifying Protein Interaction Networks. Lecture Notes in Computer Science, 2016, , 106-116.                                                                                       | 1.3 | 1         |
| 131 | Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm.<br>Bioinformatics, 2016, 32, 2664-2671.                                                                                 | 4.1 | 311       |
| 132 | C-DEVA: Detection, evaluation, visualization and annotation of clusters from biological networks.<br>BioSystems, 2016, 150, 78-86.                                                                                  | 2.0 | 11        |
| 133 | Minimum steering node set of complex networks and its applications to biomolecular networks. IET Systems Biology, 2016, 10, 116-123.                                                                                | 1.5 | 15        |
| 134 | FLEXc: protein flexibility prediction using context-based statistics, predicted structural features, and sequence information. BMC Bioinformatics, 2016, 17, 281.                                                   | 2.6 | 14        |
| 135 | Identifying Individual-Cancer-Related Genes by Rebalancing the Training Samples. IEEE Transactions on Nanobioscience, 2016, 15, 309-315.                                                                            | 3.3 | 18        |
| 136 | Predicting drug–target interaction using positive-unlabeled learning. Neurocomputing, 2016, 206, 50-57.                                                                                                             | 5.9 | 83        |
| 137 | A New Method for Predicting Protein Functions From Dynamic Weighted Interactome Networks. IEEE<br>Transactions on Nanobioscience, 2016, 15, 131-139.                                                                | 3.3 | 28        |
| 138 | HybridDock: A Hybrid Protein–Ligand Docking Protocol Integrating Protein- and Ligand-Based<br>Approaches. Journal of Chemical Information and Modeling, 2016, 56, 1078-1087.                                        | 5.4 | 35        |
| 139 | Prioritizing Disease Genes by Using Search Engine Algorithm. Current Bioinformatics, 2016, 11, 195-202.                                                                                                             | 1.5 | 22        |
| 140 | Computational approaches for prioritizing candidate disease genes based on PPI networks. Tsinghua<br>Science and Technology, 2015, 20, 500-512.                                                                     | 6.1 | 64        |
| 141 | A feature selection method for prediction essential protein. Tsinghua Science and Technology, 2015, 20, 491-499.                                                                                                    | 6.1 | 33        |
| 142 | A fast and high performance multiple data integration algorithm for identifying human disease genes.<br>BMC Medical Genomics, 2015, 8, S2.                                                                          | 1.5 | 43        |
| 143 | Re-alignment of the unmapped reads with base quality score. BMC Bioinformatics, 2015, 16, S8.                                                                                                                       | 2.6 | 14        |
| 144 | Systems Biology Approaches to Mining High Throughput Biological Data. BioMed Research<br>International, 2015, 2015, 1-2.                                                                                            | 1.9 | 2         |

| #   | Article                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Predicting microRNA-disease associations by integrating multiple biological information. , 2015, , .                                                                                |     | 12        |
| 146 | A two-step logistic regression algorithm for identifying individual-cancer-related genes. , 2015, , .                                                                               |     | 8         |
| 147 | Identifying protein complexes based on the integration of PPI network and gene expression data.<br>International Journal of Bioinformatics Research and Applications, 2015, 11, 30. | 0.2 | 2         |
| 148 | Discovering essential proteins based on PPI network and protein complex. International Journal of<br>Data Mining and Bioinformatics, 2015, 12, 24.                                  | 0.1 | 23        |
| 149 | Heterogeneous Network Model to Infer Human Disease-Long Intergenic Non-Coding RNA Associations.<br>IEEE Transactions on Nanobioscience, 2015, 14, 175-183.                          | 3.3 | 51        |
| 150 | Network Output Controllability-Based Method for Drug Target Identification. IEEE Transactions on Nanobioscience, 2015, 14, 184-191.                                                 | 3.3 | 33        |
| 151 | Detecting SNP Combinations Discriminating Human Populations From HapMap Data. IEEE Transactions on Nanobioscience, 2015, 14, 220-228.                                               | 3.3 | 4         |
| 152 | ClusterViz: A Cytoscape APP for Cluster Analysis of Biological Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 815-822.                       | 3.0 | 103       |
| 153 | A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks. IEEE/ACM<br>Transactions on Computational Biology and Bioinformatics, 2015, 12, 372-383.    | 3.0 | 88        |
| 154 | EPGA2: memory-efficient <i>de novo</i> assembler. Bioinformatics, 2015, 31, 3988-3990.                                                                                              | 4.1 | 19        |
| 155 | CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks.<br>BioSystems, 2015, 127, 67-72.                                                | 2.0 | 813       |
| 156 | EPGA: <i>de novo</i> assembly using the distributions of reads and insert size. Bioinformatics, 2015, 31, 825-833.                                                                  | 4.1 | 25        |
| 157 | Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks. BioMed<br>Research International, 2014, 2014, 1-10.                                       | 1.9 | 22        |
| 158 | A logistic regression based algorithm for identifying human disease genes. , 2014, , .                                                                                              |     | 7         |
| 159 | A Novel Algorithm for Detecting Protein Complexes with the Breadth First Search. BioMed Research<br>International, 2014, 2014, 1-8.                                                 | 1.9 | 10        |
| 160 | Prediction of Essential Proteins Based on Overlapping Essential Modules. IEEE Transactions on Nanobioscience, 2014, 13, 415-424.                                                    | 3.3 | 60        |
| 161 | Identification of Essential Proteins by Using Complexes and Interaction Network. Lecture Notes in<br>Computer Science, 2014, , 255-265.                                             | 1.3 | 6         |
| 162 | A survey of MRI-based brain tumor segmentation methods. Tsinghua Science and Technology, 2014, 19, 578-595.                                                                         | 6.1 | 252       |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks. Science China Life Sciences, 2014, 57, 1064-1071. | 4.9 | 20        |
| 164 | Disease gene identification by using graph kernels and Markov random fields. Science China Life<br>Sciences, 2014, 57, 1054-1063.                                                      | 4.9 | 33        |
| 165 | Effective identification of essential proteins based on priori knowledge, network topology and gene expressions. Methods, 2014, 67, 325-333.                                           | 3.8 | 89        |
| 166 | Detecting Protein Complexes Based on Uncertain Graph Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 486-497.                                      | 3.0 | 77        |
| 167 | Improving protein function prediction using domain and protein complexes in PPI networks. BMC Systems Biology, 2014, 8, 35.                                                            | 3.0 | 43        |
| 168 | Prediction of disease genes using tissue-specified gene-gene network. BMC Systems Biology, 2014, 8, S3.                                                                                | 3.0 | 23        |
| 169 | Prediction of disease-related genes based on weighted tissue-specific networks by using DNA methylation. BMC Medical Genomics, 2014, 7, S4.                                            | 1.5 | 14        |
| 170 | Identifying disease genes by integrating multiple data sources. BMC Medical Genomics, 2014, 7, S2.                                                                                     | 1.5 | 36        |
| 171 | A Method to Evaluate Genome-Wide Methylation in Archival Formalin-Fixed, Paraffin-Embedded<br>Ovarian Epithelial Cells. PLoS ONE, 2014, 9, e104481.                                    | 2.5 | 11        |
| 172 | An effective method for refining predicted protein complexes based on protein activity and the mechanism of protein complex formation. BMC Systems Biology, 2013, 7, 28.               | 3.0 | 8         |
| 173 | Identifying protein complexes based on density and modularity in protein-protein interaction network.<br>BMC Systems Biology, 2013, 7, S12.                                            | 3.0 | 21        |
| 174 | A new method for predicting essential proteins based on topology potential. , 2013, , .                                                                                                |     | 3         |
| 175 | A clustering algorithm for identifying hierarchical and overlapping protein complexes in large PPI networks. , 2013, , .                                                               |     | 0         |
| 176 | Identifying dynamic protein complexes based on gene expression profiles and PPI networks. , 2013, , .                                                                                  |     | 1         |
| 177 | Prioritization of candidate genes based on disease similarity and protein's proximity in PPI networks. , 2013, , .                                                                     |     | 4         |
| 178 | Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics, 2013, 13, 301-312.                                          | 2.2 | 141       |
| 179 | <i>&gt;hFâ€measure</i> : A new measurement for evaluating clusters in protein–protein interaction networks. Proteomics, 2013, 13, 291-300.                                             | 2.2 | 25        |
| 180 | IDENTIFICATION OF ESSENTIAL PROTEINS FROM WEIGHTED PROTEIN–PROTEIN INTERACTION NETWORKS.<br>Journal of Bioinformatics and Computational Biology, 2013, 11, 1341002.                    | 0.8 | 37        |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Multimeric Stability of Human C-reactive Protein in Archived Specimens. PLoS ONE, 2013, 8, e58094.                                                                                                 | 2.5 | 8         |
| 182 | Identification of Hierarchical and Overlapping Functional Modules in PPI Networks. IEEE Transactions on Nanobioscience, 2012, 11, 386-393.                                                         | 3.3 | 33        |
| 183 | Identifying Protein Complexes From Interactome Based on Essential Proteins and Local Fitness Method. IEEE Transactions on Nanobioscience, 2012, 11, 324-335.                                       | 3.3 | 15        |
| 184 | Identifying protein complexes based on local fitness method. , 2012, , .                                                                                                                           |     | 2         |
| 185 | Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data. BMC Bioinformatics, 2012, 13, 109.                                     | 2.6 | 122       |
| 186 | A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Systems Biology, 2012, 6, 15.                                       | 3.0 | 211       |
| 187 | Identification of Essential Proteins Based on Edge Clustering Coefficient. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1070-1080.                                  | 3.0 | 254       |
| 188 | A Fast Hierarchical Clustering Algorithm for Functional Modules Discovery in Protein Interaction<br>Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 607-620. | 3.0 | 171       |
| 189 | A New Measurement for Evaluating Clusters in Protein Interaction Networks. , 2011, , .                                                                                                             |     | 1         |
| 190 | A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinformatics, 2011, 12, 339.                                                                 | 2.6 | 103       |
| 191 | Integration of breast cancer gene signatures based on graph centrality. BMC Systems Biology, 2011, 5, S10.                                                                                         | 3.0 | 62        |
| 192 | Biological network motif detection and evaluation. BMC Systems Biology, 2011, 5, S5.                                                                                                               | 3.0 | 38        |
| 193 | A local average connectivity-based method for identifying essential proteins from the network level.<br>Computational Biology and Chemistry, 2011, 35, 143-150.                                    | 2.3 | 152       |
| 194 | Identifying protein complexes from interaction networks based on clique percolation and distance restriction. BMC Genomics, 2010, 11, S10.                                                         | 2.8 | 22        |
| 195 | Recent advances in clustering methods for protein interaction networks. BMC Genomics, 2010, 11, S10.                                                                                               | 2.8 | 104       |
| 196 | Identifying the overlapping complexes in protein interaction networks. International Journal of Data<br>Mining and Bioinformatics, 2010, 4, 91.                                                    | 0.1 | 36        |
| 197 | Essential Proteins Discovery from Weighted Protein Interaction Networks. Lecture Notes in Computer<br>Science, 2010, , 89-100.                                                                     | 1.3 | 33        |
| 198 | Hierarchical Organization of Functional Modules in Weighted Protein Interaction Networks Using Clustering Coefficient. Lecture Notes in Computer Science, 2009, , 75-86.                           | 1.3 | 14        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Modifying the DPClus algorithm for identifying protein complexes based on new topological structures. BMC Bioinformatics, 2008, 9, 398.                                                                     | 2.6 | 209       |
| 200 | A Fast Agglomerate Algorithm for Mining Functional Modules in Protein Interaction Networks. , 2008, , .                                                                                                     |     | 40        |
| 201 | Identification of Key Endometrial MicroRNAs and Their Target Genes Associated With Pathogenesis of<br>Recurrent Implantation Failure by Integrated Bioinformatics Analysis. Frontiers in Genetics, 0, 13, . | 2.3 | 4         |