
MÃ;té D Döbrössy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2484414/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diverging prefrontal cortex fiber connection routes to the subthalamic nucleus and the mesencephalic ventral tegmentum investigated with long range (normative) and short range (ex-vivo) Tj ETQq1	1 02784314	∙rg⁄BT /Ove
2	Optogenetic stimulation of ventral tegmental area dopaminergic neurons in a female rodent model of depression: The effect of different stimulation patterns. Journal of Neuroscience Research, 2022, 100, 897-911.	2.9	4
3	"The Heart Asks Pleasure Firstâ€â€"Conceptualizing Psychiatric Diseases as MAINTENANCE Network Dysfunctions through Insights from slMFB DBS in Depression and Obsessive–Compulsive Disorder. Brain Sciences, 2022, 12, 438.	2.3	4
4	Slow Wave Sleep Deficits in the Flinders Sensitive Line Rodent Model of Depression: Effects of Medial Forebrain Bundle Deep-Brain Stimulation. Neuroscience, 2022, 498, 31-49.	2.3	3
5	Neuromodulation in Psychiatric disorders: Experimental and Clinical evidence for reward and motivation network Deep Brain Stimulation: Focus on the medial forebrain bundle. European Journal of Neuroscience, 2021, 53, 89-113.	2.6	23
6	Enhanced adenosine A1 receptor and Homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior. Neuropharmacology, 2020, 162, 107834.	4.1	23
7	Medial forebrain bundle DBS differentially modulates dopamine release in the nucleus accumbens in a rodent model of depression. Experimental Neurology, 2020, 327, 113224.	4.1	13
8	Tractographic description of major subcortical projection pathways passing the anterior limb of the internal capsule. Corticopetal organization of networks relevant for psychiatric disorders. NeuroImage: Clinical, 2020, 25, 102165.	2.7	52
9	Deep Brain Stimulation of the Medial Forebrain Bundle in a Rodent Model of Depression: Exploring Dopaminergic Mechanisms with Raclopride and Micro-PET. Stereotactic and Functional Neurosurgery, 2020, 98, 8-20.	1.5	15
10	Enhanced mGlu5 Signaling in Excitatory Neurons Promotes Rapid Antidepressant Effects via AMPA Receptor Activation. Neuron, 2019, 104, 338-352.e7.	8.1	55
11	L-dopa response pattern in a rat model of mild striatonigral degeneration. PLoS ONE, 2019, 14, e0218130.	2.5	Ο
12	Roscovitine, an experimental CDK5 inhibitor, causes delayed suppression of microglial, but not astroglial recruitment around intracerebral dopaminergic grafts. Experimental Neurology, 2019, 318, 135-144.	4.1	14
13	The effects of bilateral, continuous, and chronic Deep Brain Stimulation of the medial forebrain bundle in a rodent model of depression. Experimental Neurology, 2018, 303, 153-161.	4.1	28
14	Olfactory discrimination and memory deficits in the Flinders Sensitive Line rodent model of depression. Behavioural Processes, 2017, 143, 25-29.	1.1	0
15	Rehabilitation training in neural restitution. Progress in Brain Research, 2017, 230, 305-329.	1.4	5
16	Anodal Transcranial Direct Current Stimulation Enhances Survival and Integration of Dopaminergic Cell Transplants in a Rat Parkinson Model. ENeuro, 2017, 4, ENEURO.0063-17.2017.	1.9	22
17	Plasmid-Based Generation of Induced Neural Stem Cells from Adult Human Fibroblasts. Frontiers in Cellular Neuroscience, 2016, 10, 245.	3.7	40
18	Stereotactic Surgery in Rats. Neuromethods, 2016, , 31-54.	0.3	1

MÃité D Döbrössy

#	Article	IF	CITATIONS
19	Long-term characterization of the Flinders Sensitive Line rodent model of human depression: Behavioral and PET evidence of a dysfunctional entorhinal cortex. Behavioural Brain Research, 2016, 300, 11-24.	2.2	19
20	Ventral tegmental area dopaminergic lesion-induced depressive phenotype in the rat is reversed by deep brain stimulation of the medial forebrain bundle. Behavioural Brain Research, 2016, 299, 132-140.	2.2	30
21	Feasibility and Safety of Continuous and Chronic Bilateral Deep Brain Stimulation of the Medial Forebrain Bundle in the NaĀ̄̄ve Sprague-Dawley Rat. Behavioural Neurology, 2015, 2015, 1-13.	2.1	19
22	Continuous High-Frequency Stimulation of the Subthalamic Nucleus Improves Cell Survival and Functional Recovery Following Dopaminergic Cell Transplantation in Rodents. Neurorehabilitation and Neural Repair, 2015, 29, 1001-1012.	2.9	11
23	Chronic deep brain stimulation of the medial forebrain bundle reverses depressive-like behavior in a hemiparkinsonian rodent model. Experimental Brain Research, 2015, 233, 3073-3085.	1.5	32
24	Electrical stimulation of the medial forebrain bundle in pre-clinical studies of psychiatric disorders. Neuroscience and Biobehavioral Reviews, 2015, 49, 32-42.	6.1	37
25	Transplantation of Human Fetal Tissue for Neurodegenerative Diseases: Validation of a New Protocol for Microbiological Analysis and Bacterial Decontamination. Cell Transplantation, 2014, 23, 995-1007.	2.5	10
26	Subthalamic nucleus lesion improves cell survival and functional recovery following dopaminergic cell transplantation in parkinsonian rats. European Journal of Neuroscience, 2014, 39, 1474-1484.	2.6	12
27	Affective Neuroscience Strategies for Understanding and Treating Depression. Clinical Psychological Science, 2014, 2, 472-494.	4.0	68
28	Two-step grafting significantly enhances the survival of foetal dopaminergic transplants and induces graft-derived vascularisation in a 6-OHDA model of Parkinson's disease. Neurobiology of Disease, 2014, 68, 112-125.	4.4	5
29	Donor age dependent graft development and recovery in a rat model of Huntington's disease: Histological and behavioral analysis. Behavioural Brain Research, 2013, 256, 56-63.	2.2	17
30	Early deficits in declarative and procedural memory dependent behavioral function in a transgenic rat model of Huntington's disease. Behavioural Brain Research, 2013, 239, 15-26.	2.2	23
31	Clinical neurotransplantation protocol for Huntington's and Parkinson's disease. Restorative Neurology and Neuroscience, 2013, 31, 579-595.	0.7	10
32	Organization of the human fetal subpallium. Frontiers in Neuroanatomy, 2013, 7, 54.	1.7	22
33	Neural Repair with Pluripotent Stem Cells. Methods in Molecular Biology, 2013, 1037, 117-144.	0.9	2
34	Pencilbeam Irradiation Technique for Whole Brain Radiotherapy: Technical and Biological Challenges in a Small Animal Model. PLoS ONE, 2013, 8, e54960.	2.5	20
35	Resistance to Hypoxia-Induced, BNIP3-Mediated Cell Death Contributes to an Increase in a CD133-Positive Cell Population in Human Glioblastomas In Vitro. Journal of Neuropathology and Experimental Neurology, 2012, 71, 1086-1099.	1.7	21
36	Impact of dopamine versus serotonin cell transplantation for the development of graft-induced dyskinesia in a rat Parkinson model. Brain Research, 2012, 1470, 119-129.	2.2	10

MÃité D Döbrössy

#	Article	IF	CITATIONS
37	[18F]desmethoxyfallypride as a novel PET radiotracer for quantitative in vivo dopamine D2/D3 receptor imaging in rat models of neurodegenerative diseases. Nuclear Medicine and Biology, 2012, 39, 1077-1080.	0.6	11
38	Role of experience, training, and plasticity in the functional efficacy of striatal transplants. Progress in Brain Research, 2012, 200, 303-328.	1.4	6
39	Restoration of the striatal circuitry: from developmental aspects toward clinical applications. Frontiers in Cellular Neuroscience, 2012, 6, 16.	3.7	12
40	Behavioral and histological analysis of a partial doubleâ€lesion model of parkinsonâ€variant multiple system atrophy. Journal of Neuroscience Research, 2012, 90, 1284-1295.	2.9	10
41	Multitract Microtransplantation Increases the Yield of DARPP-32-Positive Embryonic Striatal Cells in a Rodent Model of Huntington's Disease. Cell Transplantation, 2011, 20, 1515-1527.	2.5	14
42	Impact of dopamine to serotonin cell ratio in transplants on behavioral recovery and L-DOPA-induced dyskinesia. Neurobiology of Disease, 2011, 43, 576-587.	4.4	34
43	Extent of pre-operative L-DOPA-induced dyskinesia predicts the severity of graft-induced dyskinesia after fetal dopamine cell transplantation. Experimental Neurology, 2011, 232, 270-279.	4.1	19
44	To be or not to be accepted: the role of immunogenicity of neural stem cells following transplantation into the brain in animal and human studies. Seminars in Immunopathology, 2011, 33, 619-626.	6.1	24
45	Validating the use of M4-BAC-GFP mice as tissue donors in cell replacement therapies in a rodent model of Huntington's disease. Journal of Neuroscience Methods, 2011, 197, 6-13.	2.5	4
46	Environmental Enrichment Facilitates Long-Term Potentiation in Embryonic Striatal Grafts. Neurorehabilitation and Neural Repair, 2011, 25, 548-557.	2.9	16
47	Neural Stem Cells: From Cell Fate and Metabolic Monitoring Toward Clinical Applications. , 2011, , 435-455.		0
48	Excitotoxic Lesions of the Rodent Striatum. Neuromethods, 2011, , 21-35.	0.3	1
49	Review: Neurorehabilitation With Neural Transplantation. Neurorehabilitation and Neural Repair, 2010, 24, 692-701.	2.9	44
50	Graft-mediated functional recovery on a skilled forelimb use paradigm in a rodent model of Parkinson's disease is dependent on reward contingency. Behavioural Brain Research, 2010, 212, 187-195.	2.2	19
51	Brain-derived neurotrophic factor (BDNF) overexpression in the forebrain results in learning and memory impairments. Neurobiology of Disease, 2009, 33, 358-368.	4.4	101
52	Pattern of longâ€ŧerm sensorimotor recovery following intrastriatal and â€accumbens DA micrografts in a rat model of Parkinson's disease. Journal of Comparative Neurology, 2009, 515, 41-55.	1.6	17
53	Embryonic striatal grafts restore biâ€directional synaptic plasticity in a rodent model of Huntington's disease. European Journal of Neuroscience, 2009, 30, 2134-2142.	2.6	40
54	Ketamine anaesthesia interferes with the quinolinic acid-induced lesion in a rat model of Huntington's disease. Journal of Neuroscience Methods, 2009, 179, 219-223.	2.5	8

MÃité D Döbrössy

#	Article	IF	CITATIONS
55	Subtle but progressive cognitive deficits in the female tgHD hemizygote rat as demonstrated by operant SILT performance. Brain Research Bulletin, 2009, 79, 310-315.	3.0	18
56	Environmental Housing and Duration of Exposure Affect Striatal Graft Morphology in a Rodent Model of Huntington's Disease. Cell Transplantation, 2008, 17, 1125-1134.	2.5	23
57	The corridor task: Striatal lesion effects and graft-mediated recovery in a model of Huntington's disease. Behavioural Brain Research, 2007, 179, 326-330.	2.2	20
58	Spatial Learning Depends on Both the Addition and Removal of New Hippocampal Neurons. PLoS Biology, 2007, 5, e214.	5.6	337
59	The effects of lateralized training on spontaneous forelimb preference, lesion deficits, and graft-mediated functional recovery after unilateral striatal lesions in rats. Experimental Neurology, 2006, 199, 373-383.	4.1	31
60	Hippocampal lesions impair performance on a conditional delayed matching and non-matching to position task in the rat. Behavioural Brain Research, 2006, 171, 240-250.	2.2	16
61	Morphological and cellular changes within embryonic striatal grafts associated with enriched environment and involuntary exercise. European Journal of Neuroscience, 2006, 24, 3223-3233.	2.6	33
62	Optimising Plasticity: Environmental and Training Associated Factors in Transplant-mediated Brain Repair. Reviews in the Neurosciences, 2005, 16, 1-22.	2.9	35
63	Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington's disease. Neuroscience, 2005, 132, 543-552.	2.3	46
64	Striatal Grafts and Synaptic Plasticity. , 2005, , 313-320.		5
65	Environmental enrichment affects striatal graft morphology and functional recovery. European Journal of Neuroscience, 2004, 19, 159-168.	2.6	60
66	Differential effects of learning on neurogenesis: learning increases or decreases the number of newly born cells depending on their birth date. Molecular Psychiatry, 2003, 8, 974-982.	7.9	223
67	Motor training effects on recovery of function after striatal lesions and striatal grafts. Experimental Neurology, 2003, 184, 274-284.	4.1	73
68	The influence of environment and experience on neural grafts. Nature Reviews Neuroscience, 2001, 2, 871-879.	10.2	88
69	Operant Analysis of Striatal Dysfunction. , 2000, , 249-273.		0
70	Striatal lesions produce distinctive impairments in reaction time performance in two different operant chambers. Brain Research Bulletin, 1998, 46, 487-493.	3.0	43
71	Striatal grafts alleviate deficits in response execution in a lateralised reaction time task. Brain Research Bulletin, 1998, 47, 585-593.	3.0	29
72	Unilateral striatal lesions impair response execution on a lateralised choice reaction time task. Behavioural Brain Research, 1997, 87, 159-171.	2.2	24

#	Article	IF	CITATIONS
73	The effects of bilateral striatal lesions on the acquisition of an operant test of short term memory. NeuroReport, 1995, 6, 2049-2053.	1.2	19