Cheng-Gang Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/248388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Survival and infectivity of second-stage root-knot nematode Meloidogyne incognita juveniles depend on lysosome-mediated lipolysis. Journal of Biological Chemistry, 2022, 298, 101637.	1.6	5
2	TOR functions as a molecular switch connecting an iron cue with host innate defense against bacterial infection. PLoS Genetics, 2021, 17, e1009383.	1.5	3
3	YAP in epithelium senses gut barrier loss to deploy defenses against pathogens. PLoS Pathogens, 2020, 16, e1008766.	2.1	16
4	Adiponectin receptor PAQR-2 signaling senses low temperature to promote C. elegans longevity by regulating autophagy. Nature Communications, 2019, 10, 2602.	5.8	61
5	MicroRNAâ€30b regulates insulin sensitivity by targeting SERCA2b in nonâ€alcoholic fatty liver disease. Liver International, 2019, 39, 1504-1513.	1.9	32
6	Signal pathways involved in microbe–nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180317.	1.8	32
7	Ameliorative effects of Compound K and ginsenoside Rh1 on non-alcoholic fatty liver disease in rats. Scientific Reports, 2017, 7, 41144.	1.6	28
8	The cAMP-PKA pathway-mediated fat mobilization is required for cold tolerance in C. elegans. Scientific Reports, 2017, 7, 638.	1.6	41
9	mir-67 regulates P.Âaeruginosa avoidance behavior in C.Âelegans. Biochemical and Biophysical Research Communications, 2017, 494, 120-125.	1.0	8
10	The NADPH oxidase AoNoxA in Arthrobotrys oligospora functions as an initial factor in the infection of Caenorhabditis elegans. Journal of Microbiology, 2017, 55, 885-891.	1.3	19
11	Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation. Science Advances, 2016, 2, e1501372.	4.7	32
12	<i>Pseudomonas</i> toxin pyocyanin triggers autophagy: Implications for pathoadaptive mutations. Autophagy, 2016, 12, 1015-1028.	4.3	20
13	mir-233 Modulates the Unfolded Protein Response in C. elegans during Pseudomonas aeruginosa Infection. PLoS Pathogens, 2015, 11, e1004606.	2.1	47
14	Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nature Communications, 2014, 5, 5776.	5.8	85
15	Autophagy protects <i>C. elegans</i> against necrosis during <i>Pseudomonas aeruginosa</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12480-12485.	3.3	60
16	Autophagy is required for trap formation in the nematodeâ€ŧrapping fungus <i><scp>A</scp>rthrobotrys oligospora</i> . Environmental Microbiology Reports, 2013, 5, 511-517.	1.0	35
17	TRB3 mediates homocysteineâ€induced inhibition of endothelial cell proliferation. Journal of Cellular Physiology, 2011, 226, 2782-2789.	2.0	15
18	PacC in the nematophagous fungus <i>Clonostachys rosea</i> controls virulence to nematodes. Environmental Microbiology, 2010, 12, 1868-1877.	1.8	48

CHENG-GANG ZOU

#	Article	IF	CITATIONS
19	Regulation of subtilisinâ€like protease <i>prC</i> expression by nematode cuticle in the nematophagous fungus <i>Clonostachys rosea</i> . Environmental Microbiology, 2010, 12, 3243-3252.	1.8	36
20	Expression of a Serine Protease Gene prC Is Up-Regulated by Oxidative Stress in the Fungus Clonostachys rosea: Implications for Fungal Survival. PLoS ONE, 2010, 5, e13386.	1.1	21
21	The Molecular Mechanism of Endoplasmic Reticulum Stress-Induced Apoptosis in PC-12 Neuronal Cells: The Protective Effect of Insulin-Like Growth Factor I. Endocrinology, 2009, 150, 277-285.	1.4	81
22	Homocysteine and Redox Signaling. Antioxidants and Redox Signaling, 2005, 7, 547-559.	2.5	134
23	Tumor Necrosis Factor-α-induced Targeted Proteolysis of Cystathionine à¤Synthase Modulates Redox Homeostasis. Journal of Biological Chemistry, 2003, 278, 16802-16808.	1.6	71
24	Association Between Homocysteine and Type 2 Diabetes Mellitus: a Systematic Review and Meta-analysis. International Journal of Diabetes in Developing Countries, 0, , 1.	0.3	1