Peng Wu, P Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2483868/publications.pdf

Version: 2024-02-01

43 papers 2,730 citations

471061 17 h-index 253896 43 g-index

48 all docs

48 docs citations

48 times ranked 4630 citing authors

#	Article	IF	CITATIONS
1	Small molecules with tetrahydroquinoline-containing Povarov scaffolds as inhibitors disrupting the Protein–RNA interaction of LIN28–let-7. European Journal of Medicinal Chemistry, 2022, 228, 114014.	2.6	17
2	Synthesis and evaluation of RNase L-binding 2-aminothiophenes as anticancer agents. Bioorganic and Medicinal Chemistry, 2022, 58, 116653.	1.4	9
3	Cyclobutane-containing scaffolds in bioactive small molecules. Trends in Chemistry, 2022, 4, 677-681.	4.4	5
4	Kinase-targeting small-molecule inhibitors and emerging bifunctional molecules. Trends in Pharmacological Sciences, 2022, 43, 866-881.	4.0	13
5	Trisubstituted Pyrrolinones as Small-Molecule Inhibitors Disrupting the Protein–RNA Interaction of LIN28 and ⟨i⟩Let-7⟨ i⟩. ACS Medicinal Chemistry Letters, 2021, 12, 893-898.	1.3	22
6	Multicomponent Petasis Reaction for the Synthesis of Functionalized 2-Aminothiophenes and Thienodiazepines. ACS Combinatorial Science, 2020, 22, 495-499.	3.8	12
7	Inhibition of RNA-binding proteins with small molecules. Nature Reviews Chemistry, 2020, 4, 441-458.	13.8	76
8	Phosphorylation-Inducing Chimeric Small Molecules. Journal of the American Chemical Society, 2020, 142, 14052-14057.	6.6	90
9	Optochemical Control of Protein Degradation. ChemBioChem, 2020, 21, 2250-2252.	1.3	17
10	Reactivity and Synthetic Applications of Multicomponent Petasis Reactions. Chemical Reviews, 2019, 119, 11245-11290.	23.0	173
11	Identification and Structure–Activity Relationship Study of Imidazo[1,2- <i>a</i>) pyridine-3-amines as First Selective Inhibitors of Excitatory Amino Acid Transporter Subtype 3 (EAAT3). ACS Chemical Neuroscience, 2019, 10, 4414-4429.	1.7	11
12	A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell, 2019, 177, 1067-1079.e19.	13.5	133
13	Petasis three-component reactions for the synthesis of diverse heterocyclic scaffolds. Drug Discovery Today: Technologies, 2018, 29, 27-33.	4.0	14
14	Scaffold Diversity from <i>N</i> -Acyliminium Ions. Chemical Reviews, 2017, 117, 7811-7856.	23.0	155
15	Diastereoselective synthesis of novel heterocyclic scaffolds through tandem Petasis 3-component/intramolecular Diels–Alder and ROM–RCM reactions. Chemical Communications, 2017, 53, 9410-9413.	2.2	10
16	Tandem Mannich/Diels–Alder reactions for the synthesis of indole compound libraries. RSC Advances, 2016, 6, 46654-46657.	1.7	11
17	A metal-catalyzed enyne-cyclization step for the synthesis of bi- and tricyclic scaffolds amenable to molecular library production. Organic and Biomolecular Chemistry, 2016, 14, 6947-6950.	1.5	11
18	Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discovery Today, 2016, 21, 5-10.	3.2	383

#	Article	IF	CITATIONS
19	Synthesis of (Arylamido)pyrrolidinone Libraries through Ritterâ€Type Cascade Reactions of Dihydroxylactams. European Journal of Organic Chemistry, 2015, 2015, 5633-5639.	1.2	16
20	Reductive Cyclization and Petasisâ€Like Reaction for the Synthesis of Functionalized γâ€Lactams. European Journal of Organic Chemistry, 2015, 2015, 2346-2350.	1.2	14
21	Synthesis of 1,4,5 trisubstituted \hat{l}^3 -lactams via a 3-component cascade reaction. Bioorganic and Medicinal Chemistry, 2015, 23, 2695-2698.	1.4	15
22	Design, synthesis and biological evaluation of novel 4-alkynyl-quinoline derivatives as PI3K/mTOR dual inhibitors. European Journal of Medicinal Chemistry, 2015, 99, 36-50.	2.6	25
23	FDA-approved small-molecule kinase inhibitors. Trends in Pharmacological Sciences, 2015, 36, 422-439.	4.0	794
24	Synthesis of hexahydropyrrolo[2,1-a]isoquinoline compound libraries through a Pictet–Spengler cyclization/metal-catalyzed cross coupling/amidation sequence. Bioorganic and Medicinal Chemistry, 2015, 23, 2646-2649.	1.4	16
25	Allosteric small-molecule kinase inhibitors. , 2015, 156, 59-68.		166
26	A microwave-assisted multicomponent synthesis of substituted 3,4-dihydroquinazolinones. Organic and Biomolecular Chemistry, 2015, 13, 2044-2054.	1.5	20
27	Design, Synthesis, Biological Evaluation, and Docking Studies of (<i>S</i>)â€Phenylalanine Derivatives with a 2â€Cyanopyrrolidine Moiety as Potent Dipeptidyl Peptidase 4 Inhibitors. Chemical Biology and Drug Design, 2013, 82, 140-146.	1.5	7
28	Synthesis and biological evaluation of novel benzyl-substituted (S)-phenylalanine derivatives as potent dipeptidyl peptidase 4 inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 5679-5687.	1.4	15
29	Clinical and Marketed Proteasome Inhibitors for Cancer Treatment. Current Medicinal Chemistry, 2013, 20, 2537-2551.	1.2	43
30	Design, synthesis and biological evaluation of 3-benzylideneflavanone derivatives as cytotoxic agents. Medicinal Chemistry Research, 2012, 21, 4150-4157.	1.1	5
31	Discovery of novel morpholino–quinoxalines as PI3Kα inhibitors by pharmacophore-based screening. MedChemComm, 2012, 3, 659.	3.5	16
32	Small molecules targeting phosphoinositide 3-kinases. MedChemComm, 2012, 3, 1337.	3.5	54
33	Discovery of novel 2-piperidinol-3-(arylsulfonyl)quinoxalines as phosphoinositide 3-kinase α (PI3Kα) inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 2837-2844.	1.4	16
34	QSAR Models for isoindolinoneâ€based p53–MDM2 Interaction Inhibitors Using Linear and Nonâ€linear Statistical Methods. Chemical Biology and Drug Design, 2012, 79, 691-702.	1.5	8
35	Identification of Novel Piperazinylquinoxaline Derivatives as Potent Phosphoinositide 3-Kinase (PI3K) Inhibitors. PLoS ONE, 2012, 7, e43171.	1.1	3
36	Flavonoids as Vasorelaxant Agents: Synthesis, Biological Evaluation and Quantitative Structure Activities Relationship (QSAR) Studies. Molecules, 2011, 16, 8257-8272.	1.7	15

#	Article	IF	CITATIONS
37	Synthesis and biological evaluation of novel 2-arylamino-3-(arylsulfonyl)quinoxalines as PI3Kα inhibitors. European Journal of Medicinal Chemistry, 2011, 46, 5540-5548.	2.6	31
38	Searching for the Multi-Target-Directed Ligands against Alzheimer's disease: Discovery of quinoxaline-based hybrid compounds with AChE, H3R and BACE 1 inhibitory activities. Bioorganic and Medicinal Chemistry, 2011, 19, 7158-7167.	1.4	63
39	Dual-target-directed 1,3-diphenylurea derivatives: BACE 1 inhibitor and metal chelator against Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2010, 18, 5610-5615.	1.4	56
40	PI3K/Akt/mTOR Pathway Inhibitors in Cancer: A Perspective on Clinical Progress. Current Medicinal Chemistry, 2010, 17, 4326-4341.	1.2	89
41	PI3K Inhibitors for Cancer Therapy: What has been Achieved So Far?. Current Medicinal Chemistry, 2009, 16, 916-930.	1.2	38
42	Synthesis, biological evaluation and quantitative structure-activities relationship of flavonoids as vasorelaxant agents. Bioorganic and Medicinal Chemistry, 2009, 17, 716-726.	1.4	33
43	Synthesis of Novel 1,4-Benzoxazine-2,3-Dicarboximides from Maleic Anhydride and Substituted Aromatic Amines. Synthetic Communications, 2008, 39, 70-84.	1.1	5