Fabio Valoppi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/248353/publications.pdf

Version: 2024-02-01

567281 501196 32 798 15 28 citations h-index g-index papers 32 32 32 829 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Practical scale modification of oleogels by ultrasonic standing waves. Ultrasonics Sonochemistry, 2022, 85, 105970.	8.2	7
2	Size-dependent filling effect of crystalline celluloses in structural engineering of composite oleogels. LWT - Food Science and Technology, 2022, 160, 113331.	5.2	7
3	Oleogels and Organogels: A Promising Tool for New Functionalities. Gels, 2022, 8, 349.	4.5	4
4	Addressing criticalities in the INFOGEST static in vitro digestion protocol for oleogel analysis. Food Research International, 2022, 160, 111633.	6.2	10
5	Automated image analysis method for oil-release test of lipid-based materials. MethodsX, 2021, 8, 101447.	1.6	2
6	Valorization of Native Soluble and Insoluble Oat Side Streams for Stable Suspensions and Emulsions. Food and Bioprocess Technology, 2021, 14, 751-764.	4.7	11
7	Ultrasonic standing wave chamber for engineering microstructures of water- and lipid-based materials. Engineering Research Express, 2021, 3, 016002.	1.6	4
8	Time-dependent self-association of spruce galactoglucomannans depends on pH and mechanical shearing. Food Hydrocolloids, 2020, 102, 105607.	10.7	17
9	Controlling oleogel crystallization using ultrasonic standing waves. Scientific Reports, 2020, 10, 14448.	3.3	26
10	Inhibition of lipid autoxidation by vegetable waxes. Food and Function, 2020, 11, 6215-6225.	4.6	8
11	Centrifugal fractionation of softwood extracts improves the biorefinery workflow and yields functional emulsifiers. Green Chemistry, 2019, 21, 4691-4705.	9.0	27
12	Microemulsions as delivery systems of lemon oil and $\hat{l}^2\hat{a}\in c$ arotene into beverages: stability test under different light conditions. Journal of the Science of Food and Agriculture, 2019, 99, 7016-7020.	3.5	7
13	Spruce galactoglucomannan-stabilized emulsions as essential fatty acid delivery systems for functionalized drinkable yogurt and oat-based beverage. European Food Research and Technology, 2019, 245, 1387-1398.	3.3	23
14	Lignin-Rich PHWE Hemicellulose Extracts Responsible for Extended Emulsion Stabilization. Frontiers in Chemistry, 2019, 7, 871.	3.6	31
15	Combined high-power ultrasound and high-pressure homogenization nanoemulsification: The effect of energy density, oil content and emulsifier type and content. Food Research International, 2018, 107, 700-707.	6.2	32
16	\hat{l}^2 -Carotene degradation kinetics as affected by fat crystal network and solid/liquid ratio. Food Research International, 2018, 105, 599-604.	6.2	14
17	Stearyl Alcohol Oleogels. , 2018, , 219-234.		4
18	Influence of oil type on formation, structure, thermal, and physical properties of monoglycerideâ€based organogel. European Journal of Lipid Science and Technology, 2017, 119, 1500549.	1.5	79

#	Article	IF	CITATIONS
19	Development of Transparent Curcumin Loaded Microemulsions by Phase Inversion Temperature (PIT) Method: Effect of Lipid Type and Physical State on Curcumin Stability. Food Biophysics, 2017, 12, 45-51.	3.0	18
20	Fabrication of Transparent Lemon Oil Loaded Microemulsions by Phase Inversion Temperature (PIT) Method: Effect of Oil Phase Composition and Stability after Dilution. Food Biophysics, 2017, 12, 244-249.	3.0	7
21	Exploitation of $\hat{\mathbb{P}}$ -carrageenan aerogels as template for edible oleogel preparation. Food Hydrocolloids, 2017, 71, 68-75.	10.7	110
22	Pomegranate seed oil organogels structured by propolis wax, beeswax, and their mixture. European Journal of Lipid Science and Technology, 2017, 119, 1700032.	1.5	31
23	Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT - Food Science and Technology, 2017, 86, 523-529.	5.2	119
24	Structure and physical properties of oleogels containing peanut oil and saturated fatty alcohols. European Journal of Lipid Science and Technology, 2017, 119, 1600252.	1.5	36
25	Phase Transition and Polymorphic Behavior of Binary Systems Containing Fatty Alcohols and Peanut Oil. Crystal Growth and Design, 2016, 16, 4209-4215.	3.0	21
26	Omega-3 Enriched Biscuits with Low Levels of Heat-Induced Toxicants: Effect of Formulation and Baking Conditions. Food and Bioprocess Technology, 2016, 9, 232-242.	4.7	9
27	Inactivation of mushroom polyphenoloxidase in model systems exposed to high-pressure carbon dioxide. Journal of Supercritical Fluids, 2016, 107, 669-675.	3.2	18
28	Structural and viscoelastic characterization of ternary mixtures of sunflower oil, saturated monoglycerides and aqueous phases containing different bases. Food Research International, 2015, 74, 224-230.	6.2	9
29	Efficient management of the water resource in the fresh-cut industry: Current status and perspectives. Trends in Food Science and Technology, 2015, 46, 286-294.	15.1	33
30	Compositional Phase Diagram, Rheological and Structural Properties of Systems Containing UHT Skim Milk, Sunflower Oil, Saturated Monoglycerides and Co-Surfactants. Food Biophysics, 2015, 10, 94-102.	3.0	8
31	Mutual effect of fat and \hat{l}^2 -carotene on fat crystal network structure and carotenoid bleaching. Food Research International, 2014, 66, 257-263.	6.2	12
32	Effect of palm oil replacement with monoglyceride organogel and hydrogel on sweet bread properties. Food Research International, 2013, 51, 596-602.	6.2	54