Adam Szewczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/248305/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Properties of electrode-supported lipid cubic mesophase films with embedded gramicidin A: structure and ion-transport studies. Bioelectrochemistry, 2022, 144, 108042.	2.4	2
2	Mitochondrial potassium channels: A novel calcitriol target. Cellular and Molecular Biology Letters, 2022, 27, 3.	2.7	11
3	Methods of Measuring Mitochondrial Potassium Channels: A Critical Assessment. International Journal of Molecular Sciences, 2022, 23, 1210.	1.8	11
4	Probing the flux of mitochondrial potassium using an azacrown-diketopyrrolopyrrole based highly sensitive probe. Chemical Communications, 2022, 58, 4500-4503.	2.2	2
5	Targeting Mitochondrial Large-Conductance Calcium-Activated Potassium Channel by Hydrogen Sulfide via Heme-Binding Site. Journal of Pharmacology and Experimental Therapeutics, 2022, 381, 137-150.	1.3	10
6	Flavonoid quercetin abolish paxilline inhibition of the mitochondrial BKCa channel. Mitochondrion, 2022, 65, 23-32.	1.6	6
7	Current Challenges of Mitochondrial Potassium Channel Research. Frontiers in Physiology, 2022, 13, .	1.3	9
8	Regulation of Lipid Bilayer Ion Permeability by Antibacterial Polymethyloxazolineâ€Polyethyleneimine Copolymers. ChemBioChem, 2021, 22, 1020-1029.	1.3	3
9	Molecular and Functional Effects of Loss of Cytochrome c Oxidase Subunit 8A. Biochemistry (Moscow), 2021, 86, 33-43.	0.7	2
10	Red emissive sulfone-rhodols as mitochondrial imaging agents. Chemical Communications, 2021, 57, 7782-7785.	2.2	8
11	Single channel properties of mitochondrial large conductance potassium channel formed by BK-VEDEC splice variant. Scientific Reports, 2021, 11, 10925.	1.6	16
12	Identification of the Large-Conductance Ca2+-Regulated Potassium Channel in Mitochondria of Human Bronchial Epithelial Cells. Molecules, 2021, 26, 3233.	1.7	14
13	Multidimensional Regulation of Cardiac Mitochondrial Potassium Channels. Cells, 2021, 10, 1554.	1.8	16
14	Cytoprotective effects of the flavonoid quercetin by activating mitochondrial BKCa channels in endothelial cells Biomedicine and Pharmacotherapy, 2021, 142, 112039.	2.5	20
15	Mitochondrial Potassium Channels as Druggable Targets. Biomolecules, 2020, 10, 1200.	1.8	46
16	Heme is required for carbon monoxide activation of mitochondrial BKCa channel. European Journal of Pharmacology, 2020, 881, 173191.	1.7	24
17	The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBKCa channels by a membrane-mediated mechanism. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183337. 	1.4	22
18	Signaling pathways targeting mitochondrial potassium channels. International Journal of Biochemistry and Cell Biology, 2020, 125, 105792.	1.2	24

#	Article	IF	CITATIONS
19	Regulation of the Mitochondrial BKCa Channel by the Citrus Flavonoid Naringenin as a Potential Means of Preventing Cell Damage. Molecules, 2020, 25, 3010.	1.7	30
20	Beneficial Effect of Citrus Flavonoid - Naringenin on Endothelial Cells by Activation of Mitochondrial Potassium Channels. Biophysical Journal, 2020, 118, 263a.	0.2	0
21	Chloride channel blocker IAA-94 increases myocardial infarction by reducing calcium retention capacity of the cardiac mitochondria. Life Sciences, 2019, 235, 116841.	2.0	12
22	BKCa (Slo) Channel Regulates Mitochondrial Function and Lifespan in Drosophila melanogaster. Cells, 2019, 8, 945.	1.8	19
23	Energy-dissipating hub in muscle mitochondria: Potassium channels and uncoupling proteins. Archives of Biochemistry and Biophysics, 2019, 664, 102-109.	1.4	9
24	Synthesis of Romk1/2 Protein in E.Coli. Biophysical Journal, 2019, 116, 242a-243a.	0.2	0
25	Mitochondrial Potassium Channels: Regulation by Gaseous Transmitter. Biophysical Journal, 2019, 116, 268a-269a.	0.2	0
26	Naringenin as an opener of mitochondrial potassium channels in dermal fibroblasts. Experimental Dermatology, 2019, 28, 543-550.	1.4	22
27	Single-Channel Properties of the ROMK-Pore-Forming Subunit of the Mitochondrial ATP-Sensitive Potassium Channel. International Journal of Molecular Sciences, 2019, 20, 5323.	1.8	30
28	Evidence for a mitochondrial ATP-regulated potassium channel in human dermal fibroblasts. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 309-318.	0.5	35
29	Diverse Pharmacological Effects of Carbon Monoxide-Releasing Molecules on Mitochondrial BK Channel. Biophysical Journal, 2018, 114, 488a.	0.2	0
30	Oneâ€Photon and Twoâ€Photon Mitochondrial Fluorescent Probes Based on a Rhodol Chromophore. Asian Journal of Organic Chemistry, 2018, 7, 411-415.	1.3	5
31	Gas Signaling Molecules and Mitochondrial Potassium Channels. International Journal of Molecular Sciences, 2018, 19, 3227.	1.8	37
32	Mitochondrial BK Channel Openers CGS7181 and CGS7184 Exhibit Cytotoxic Properties. International Journal of Molecular Sciences, 2018, 19, 353.	1.8	17
33	Hydrogen Sulfide Regulates the Activity of Mitochondrial Large Conductance Calcium Activated Potassium Channel (MitoBKCa). Biophysical Journal, 2018, 114, 131a.	0.2	0
34	Mechanosensitivity of mitochondrial large-conductance calcium-activated potassium channels. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 797-805.	0.5	39
35	Modulation of the Mitochondrial Potassium Channel Activity by Infrared Light. Biophysical Journal, 2018, 114, 43a.	0.2	4
36	Mitochondrial potassium channels – an overview. Postepy Biochemii, 2018, 64, 196-212.	0.5	18

#	Article	IF	CITATIONS
37	Flavonoids as Natural Modulators of Mitochondrial Potassium Channel. Biophysical Journal, 2017, 112, 405a-406a.	0.2	3
38	Mechanosensitivity of Mitochondrial Potassium Channels. Biophysical Journal, 2017, 112, 406a.	0.2	2
39	Identification of Large-Conductance Calcium-Regulated K Channel in Human Dermal Mitochndria. Biophysical Journal, 2017, 112, 406a.	0.2	0
40	cGMP-Elevating Compounds and Ischemic Conditioning Provide Cardioprotection Against Ischemia and Reperfusion Injury via Cardiomyocyte-Specific BK Channels. Circulation, 2017, 136, 2337-2355.	1.6	124
41	Properties of degraded and reclaimed soils in the area of the abandoned "Jeziórko―sulfur mine (Poland). Soil Science Annual, 2016, 67, 163-172.	0.4	2
42	A large-conductance calcium-regulated K+ channel in human dermal fibroblast mitochondria. Biochemical Journal, 2016, 473, 4457-4471.	1.7	34
43	Identification of Cardiac Mitochondrial Chloride Intracellular Channel (CLIC) Proteins and their Physiological Function. Biophysical Journal, 2016, 110, 453a.	0.2	0
44	Single channel properties and topology of the ROMK2 - pore forming unit of the mitoKATP channel. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e67.	0.5	0
45	Potassium channel opener NS1619 modulates endothelial function. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e68.	0.5	0
46	Guide to the Pharmacology of Mitochondrial Potassium Channels. Handbook of Experimental Pharmacology, 2016, 240, 103-127.	0.9	27
47	SERCA, complex I of the respiratory chain and ATP-synthase inhibition are involved in pleiotropic effects of NS1619 on endothelial cells. European Journal of Pharmacology, 2016, 786, 137-147.	1.7	16
48	What do we not know about mitochondrial potassium channels?. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1247-1257.	0.5	110
49	Effectors of large-conductance calcium-activated potassium channel modulate glutamate excitotoxicity in organotypic hippocampal slice cultures. Acta Neurobiologiae Experimentalis, 2016, 76, 20-31.	0.4	15
50	Biophysical and Biochemical Properties of the Large Conductance Potassium Channel in Fibroblast Mitochondria. Biophysical Journal, 2015, 108, 606a.	0.2	0
51	Mitochondrial large-conductance potassium channel from Dictyostelium discoideum. International Journal of Biochemistry and Cell Biology, 2015, 60, 167-175.	1.2	16
52	Carbon monoxide released by CORM-401 uncouples mitochondrial respiration and inhibits glycolysis in endothelial cells: A role for mitoBKCa channels. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1297-1309.	0.5	60
53	Identification of the ATP Regulated Potassium Channel in Mitochondria of Fibroblast Cells. Biophysical Journal, 2015, 108, 606a.	0.2	0
54	Mitochondrial mechanisms of endothelial dysfunction. Pharmacological Reports, 2015, 67, 704-710.	1.5	79

#	Article	IF	CITATIONS
55	Potassium Channel in the Mitochondria of Human Keratinocytes. Journal of Investigative Dermatology, 2014, 134, 764-772.	0.3	37
56	Hemin inhibits the large conductance potassium channel in brain mitochondria: A putative novel mechanism of neurodegeneration. Experimental Neurology, 2014, 257, 70-75.	2.0	31
5 7	Role of mitochondria in reactive oxygen species production and inflammatory processes in endothelial cells. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e77.	O.5	Ο
58	Modulation of the mitochondrial large-conductance calcium-regulated potassium channel by polyunsaturated fatty acids. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1602-1610.	0.5	10
59	Expression of Different Subunits of the Calcium-Regulated BK Channel in Rat Brain and Its Putative Cytoprotective Properties. Biophysical Journal, 2014, 106, 738a.	0.2	1
60	Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain. Biophysical Journal, 2014, 106, 760a.	0.2	0
61	New Mitochondrial Potassium Channels. Biophysical Journal, 2014, 106, 4a.	0.2	1
62	Coupling of the Electron Transport Chain with the Mitochondrial BKCa Channel in Rat Astrocytes. Biophysical Journal, 2013, 104, 215a.	0.2	0
63	Mitochondrial Potassium Channels in Dictyostelium Discoideum. Biophysical Journal, 2013, 104, 658a.	0.2	Ο
64	Mitochondria as a pharmacological target: Magnum overview. IUBMB Life, 2013, 65, 273-281.	1.5	58
65	Large-conductance Ca ²⁺ -activated potassium channel in mitochondria of endothelial EA.hy926 cells. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1415-H1427.	1.5	65
66	Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain. PLoS ONE, 2013, 8, e68125.	1.1	89
67	A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1867-1878.	0.5	9
68	Glutamate-induced cell death in HT22 mouse hippocampal cells is attenuated by paxilline, a BK channel inhibitor. Mitochondrion, 2012, 12, 169-172.	1.6	18
69	The potassium channel opener CGS7184 activates Ca2+ release from the endoplasmic reticulum. European Journal of Pharmacology, 2012, 690, 60-67.	1.7	19
70	A Novel Mitochondrial Potassium Channel in Embryonic Hippocampal Mitochondra. Biophysical Journal, 2012, 102, 161a.	0.2	0
71	Oxidized Heme - A Novel Inhibitor of Calcium-Dependent BK Channel in Rat Brain Mitochondria. Biophysical Journal, 2012, 102, 162a.	0.2	0
72	Coronatin-1 isolated from entomopathogenic fungus Conidiobolus coronatus kills Galleria mellonella hemocytes inÂvitro and forms potassium channels in planar lipid membrane. Toxicon, 2011, 58. 369-379.	0.8	23

#	Article	IF	CITATIONS
73	lon conductance pathways in potato tuber (Solanum tuberosum) inner mitochondrial membrane. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 275-285.	0.5	20
74	Downâ€regulation of Kir4.1 in the cerebral cortex of rats with liver failure and in cultured astrocytes treated with glutamine: Implications for astrocytic dysfunction in hepatic encephalopathy. Journal of Neuroscience Research, 2011, 89, 2018-2027.	1.3	22
75	Effect of selected NAD+ analogues on mitochondria activity and proliferation of endothelial EA.hy926 cells. European Journal of Pharmacology, 2010, 640, 102-111.	1.7	3
76	Modulation of intracellular chloride channels by ATP and Mg2+. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1300-1312.	0.5	5
77	Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1163-1170.	0.5	70
78	Pharmacology of mitochondrial potassium channels: dark side of the field. FEBS Letters, 2010, 584, 2063-2069.	1.3	70
79	Intracellular ion channels. FEBS Letters, 2010, 584, 1941-1941.	1.3	2
80	The Cytoprotective Action of the Potassium Channel Opener BMS-191095 in C2C12 Myoblasts is Related to the Modulation of Calcium Homeostasis. Cellular Physiology and Biochemistry, 2010, 26, 235-246.	1.1	13
81	Identification of a voltage-gated potassium channel in gerbil hippocampal mitochondria. Biochemical and Biophysical Research Communications, 2010, 397, 614-620.	1.0	55
82	Calcium Ions Regulate K+ Uptake into Brain Mitochondria: The Evidence for a Novel Potassium Channel. International Journal of Molecular Sciences, 2009, 10, 1104-1120.	1.8	69
83	Large-conductance K+ channel opener CCS7184 as a regulator of endothelial cell function. European Journal of Pharmacology, 2009, 602, 105-111.	1.7	18
84	Mitochondrial potassium channels. IUBMB Life, 2009, 61, 134-143.	1.5	153
85	Single channel studies of the ATP-regulated potassium channel in brain mitochondria. Journal of Bioenergetics and Biomembranes, 2009, 41, 323-334.	1.0	28
86	A large-conductance calcium-activated potassium channel in potato (<i>Solanum tuberosum</i>) tuber mitochondria. Biochemical Journal, 2009, 424, 307-316.	1.7	41
87	New properties of mitochondrial ATP-regulated potassium channels. Journal of Bioenergetics and Biomembranes, 2008, 40, 325-35.	1.0	32
88	A novel potassium channel in skeletal muscle mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 651-659.	0.5	70
89	BK channel openers inhibit ROS production of isolated rat brain mitochondria. Experimental Neurology, 2008, 212, 543-547.	2.0	109
90	ATP-sensitive Potassium Channel in Mitochondria of the Eukaryotic Microorganism Acanthamoeba castellanii. Journal of Biological Chemistry, 2007, 282, 17433-17441.	1.6	45

#	Article	IF	CITATIONS
91	Lysenin-His, a sphingomyelin-recognizing toxin, requires tryptophan 20 for cation-selective channel assembly but not for membrane binding. Molecular Membrane Biology, 2007, 24, 121-134.	2.0	46
92	Bongkrekic acid and atractyloside inhibits chloride channels from mitochondrial membranes of rat heart. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 31-44.	0.5	32
93	Stilbene derivatives inhibit the activity of the inner mitochondrial membrane chloride channels. Cellular and Molecular Biology Letters, 2007, 12, 493-508.	2.7	12
94	Mitochondrial potassium channels: From pharmacology to function. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 715-720.	0.5	69
95	The heterogeneity of ion channels in chromaffin granule membranes. Cellular and Molecular Biology Letters, 2006, 11, 312-25.	2.7	7
96	A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Molecular Therapy, 2005, 11, 990-995.	3.7	967
97	Antidiabetic sulphonylureas activate mitochondrial permeability transition in rat skeletal muscle. British Journal of Pharmacology, 2005, 145, 785-791.	2.7	25
98	Matrix Mg2+regulates mitochondrial ATP-dependent potassium channel from heart. FEBS Letters, 2005, 579, 1625-1632.	1.3	69
99	Low and high molecular weight poly(l-lysine)s/poly(l-lysine)-DNA complexes initiate mitochondrial-mediated apoptosis differently. FEBS Letters, 2005, 579, 6191-6198.	1.3	109
100	Mitochondrial Channels Permeable by Calcium Ions. Toxicology Mechanisms and Methods, 2004, 14, 35-39.	1.3	2
101	Large-Conductance Potassium Cation Channel Opener NS1619 Inhibits Cardiac Mitochondria Respiratory Chain. Toxicology Mechanisms and Methods, 2004, 14, 59-61.	1.3	40
102	pH modulation of large conductance potassium channel from adrenal chromaffin granules. Molecular Membrane Biology, 2004, 21, 307-313.	2.0	6
103	Mitochondria and Big-Conductance Potassium Channel Openers. Toxicology Mechanisms and Methods, 2004, 14, 63-65.	1.3	3
104	Large-conductance K+ channel openers NS1619 and NS004 as inhibitors of mitochondrial function in glioma cells. Biochemical Pharmacology, 2003, 65, 1827-1834.	2.0	69
105	Opening of potassium channels modulates mitochondrial function in rat skeletal muscle. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1556, 97-105.	0.5	89
106	The Gef1 protein of Saccharomyces cerevisiae is associated with chloride channel activity. Biochemical and Biophysical Research Communications, 2002, 294, 1144-1150.	1.0	23
107	Mitochondria as a Pharmacological Target. Pharmacological Reviews, 2002, 54, 101-127.	7.1	461
108	Effect of antimicrobial apomyoglobin 56–131 peptide on liposomes and planar lipid bilayer membrane. International Journal of Antimicrobial Agents, 2001, 17, 137-142.	1.1	22

#	Article	IF	CITATIONS
109	Potassium channel openers depolarize hippocampal mitochondria. Brain Research, 2001, 892, 42-50.	1.1	86
110	Acidic pH-induced folding of annexin VI is a prerequisite for its insertion into lipid bilayers and formation of ion channels by the protein molecules. FASEB Journal, 2001, 15, 1083-1085.	0.2	47
111	Acidic pHâ€induced folding of annexin VI is a prerequisite for its insertion into lipid bilayers and formation of ion channels by the protein molecules. FASEB Journal, 2001, 15, 1083-1085.	0.2	7
112	Lipid metabolism as a target for potassium channel effectors. Biochemical Pharmacology, 2000, 60, 607-614.	2.0	8
113	Mitochondrial ATP-Dependent Potassium Channels: Viable Candidate Effectors of Ischemic Preconditioninga. Annals of the New York Academy of Sciences, 1999, 874, 27-37.	1.8	137
114	Modification of the Mitochondrial Sulfonylurea Receptor by Thiol Reagents. Biochemical and Biophysical Research Communications, 1999, 262, 255-258.	1.0	20
115	Adenosine 5′-triphosphate: an intracellular metabolic messenger. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 333-353.	0.5	46
116	The intracellular potassium and chloride channels: Properties, pharmacology and function (Review). Molecular Membrane Biology, 1998, 15, 49-58.	2.0	48
117	Intracellular targets for antidiabetic sulfonylureas and potassium channel openers. Biochemical Pharmacology, 1997, 54, 961-965.	2.0	35
118	The Mitochondrial Sulfonylurea Receptor: Identification and Characterization. Biochemical and Biophysical Research Communications, 1997, 230, 611-615.	1.0	68
119	An antagonist of ATP-regulated potassium channels, the guanidine derivative U-37883A, stimulates the synthesis of phosphatidylserine in rat liver endoplasmic reticulum membranes. FEBS Letters, 1997, 409, 292-296.	1.3	8
120	Effects of K channel inhibitors on potassium transport in bovine adrenal chromaffin granules. IUBMB Life, 1997, 41, 679-686.	1.5	2
121	Glibenclamide inhibits mitochondrial K+ and Na+ uniports induced by magnesium depletion. International Journal of Biochemistry and Cell Biology, 1996, 28, 863-871.	1.2	24
122	ATP-regulated K+ channel in mitochondria: Pharmacology and function. Journal of Bioenergetics and Biomembranes, 1996, 28, 147-152.	1.0	31
123	ATP-sensitive potassium channels in insulinoma cells are activated by nonesterified fatty acids. Biochemistry, 1992, 31, 4656-4661.	1.2	43
124	8-Methoxypsoralen blocks ATP-sensitive potassium channels and stimulates insulin release. European Journal of Pharmacology, 1992, 216, 323-326.	1.7	14
125	TMB-8 (8-(N,N-diethylamino) octyl-3,4,5-trimethoxybenzoate) inhibits the ATP-sensitive K+ channel. European Journal of Pharmacology, 1992, 226, 175-177.	2.7	13
126	Azido derivative of tricarâ ylic acid for photoaffinity labeling. Biochimica Et Biophysica Acta - General Subjects, 1991, 1073, 209-212.	1.1	2

#	Article	IF	CITATIONS
127	α-Tocopherol (vitamin E) regulates vascular smooth muscle cell proliferation and protein kinase C activity. Archives of Biochemistry and Biophysics, 1991, 286, 264-269.	1.4	203
128	Azido derivatives of dicarboxylic acids for photoaffinity labeling of mitochondrial carriers. Journal of Proteomics, 1989, 18, 125-134.	2.4	2
129	New Photoaffinity Derivatives of Malonate and Succinate to Study Mitochondrial Carrier Systems. , 1989, , 87-97.		0
130	Isolation and Functional Reconstitution of the Dicarboxylate Carrier from Bovine Liver Mitochondria. , 1989, , 71-85.		1
131	Purification by affinity chromatography of the dicarboxylate carrier from bovine heart mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 894, 252-260.	0.5	25
132	Internalization of the spin-labelled surface potential probe CAT12 by energized mitochondria. Biochemical and Biophysical Research Communications, 1986, 136, 941-946.	1.0	5