Daniel Schlenk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/248294/publications.pdf

Version: 2024-02-01

252 papers

9,563 citations

57681 46 h-index 71088 80 g-index

254 all docs

254 docs citations

times ranked

254

10117 citing authors

#	Article	IF	Citations
1	Exposure of zebrafish larvae to water accommodated fractions of weathered crude oil alters steroid hormone concentrations with minimal effect on cholesterol. Aquatic Toxicology, 2022, 242, 106045.	1.9	6
2	The developing zebrafish kidney is impaired by Deepwater Horizon crude oil early-life stage exposure: A molecular to whole-organism perspective. Science of the Total Environment, 2022, 808, 151988.	3.9	11
3	RNA Sequencing of Lake Charr Epidermal Mucus to Assess Molecular Effects of Diluted Bitumen Exposure in a Boreal Lake. Frontiers in Environmental Science, 2022, 10, .	1.5	O
4	Relationship between miR-203a inhibition and oil-induced toxicity in early life stage zebrafish (Danio) Tj ETQq0 0) 0 rgBT /O	verjock 10 Tf
5	Dietary Exposure to Bifenthrin and Fipronil Impacts Swimming Performance in Juvenile Chinook Salmon (<i>Oncorhynchus tshawytscha</i>). Environmental Science & Echnology, 2022, 56, 5071-5080.	4.6	7
6	Antibiotic Chlortetracycline Causes Transgenerational Immunosuppression via NF-κB. Environmental Science & Environmental Scie	4.6	23
7	Pesticide residues in juvenile Chinook salmon and prey items of the Sacramento River watershed, California $\hat{a} \in \mathbb{C}$ A comparison of riverine and floodplain habitats. Environmental Pollution, 2022, 303, 119102.	3.7	8
8	Bioavailability of legacy and current-use pesticides in juvenile Chinook salmon habitat of the Sacramento River watershed: Importance of sediment characteristics and extraction techniques. Chemosphere, 2022, 298, 134174.	4.2	4
9	Transcriptomic responses and apoptosis in larval red drum (Sciaenops ocellatus) co-exposed to crude oil and ultraviolet (UV) radiation. Marine Pollution Bulletin, 2022, 179, 113684.	2.3	3
10	Bioassay guided analysis coupled with non-target chemical screening in polyethylene plastic shopping bag fragments after exposure to simulated gastric juice of Fish. Journal of Hazardous Materials, 2021, 401, 123421.	6. 5	24
11	Environmentally relevant concentrations of boscalid exposure affects the neurobehavioral response of zebrafish by disrupting visual and nervous systems. Journal of Hazardous Materials, 2021, 404, 124083.	6.5	42
12	Evaluating the estrogenicity of an effluent-dominated river in California, USA: Comparisons of in vitro and in vivo bioassays. Science of the Total Environment, 2021, 758, 143965.	3.9	4
13	Alteration of neuro-dopamine and steroid hormone homeostasis in wild Bank voles in relation to tissue concentrations of PFAS at a Nordic skiing area. Science of the Total Environment, 2021, 756, 143745.	3.9	15
14	Effects of dietary cypermethrin exposure on swimming performance and expression of lipid homeostatic genes in livers of juvenile Chinook salmon, Oncorhynchus tshawytscha. Ecotoxicology, 2021, 30, 257-267.	1.1	11
15	Transcriptomic and Histopathological Effects of Bifenthrin to the Brain of Juvenile Rainbow Trout (Oncorhynchus mykiss). Toxics, 2021, 9, 48.	1.6	17
16	Effects of Phenanthrene Exposure on Cholesterol Homeostasis and Cardiotoxicity in Zebrafish Embryos. Environmental Toxicology and Chemistry, 2021, 40, 1586-1595.	2.2	10
17	The effects of temperature and salinity on the endocrinology in two life stages of juvenile rainbow/steelhead trout (<scp><i>Oncorhynchus mykiss</i></scp>). Journal of Fish Biology, 2021, 99, 513-523.	0.7	5
18	Stage-dependent and regioselective toxicity of 2- and 6-hydroxychrysene during Japanese medaka embryogenesis. Aquatic Toxicology, 2021, 234, 105791.	1.9	3

#	Article	IF	CITATIONS
19	Pesticide and Surfactant Mixtures Alter Sexual Differentiation in Japanese Medaka (Oryzias latipes). ACS ES&T Water, 2021, 1, 1533-1540.	2.3	1
20	Stage Dependent Enantioselective Metabolism of Bifenthrin in Embryos of Zebrafish (<i>Danio) Tj ETQq0 0 0 rgBT 55, 9087-9096.</i>	/Overlock 4.6	10 Tf 50 7 14
21	Dietary Seleno- <scp>I</scp> -Methionine Causes Alterations in Neurotransmitters, Ultrastructure of the Brain, and Behaviors in Zebrafish (<i>Danio rerio</i>). Environmental Science & Eamp; Technology, 2021, 55, 11894-11905.	4.6	39
22	miR133b Microinjection during Early Development Targets Transcripts of Cardiomyocyte Ion Channels and Induces Oil-like Cardiotoxicity in Zebrafish (<i>Danio rerio</i>) Embryos. Chemical Research in Toxicology, 2021, 34, 2209-2215.	1.7	3
23	Effects of an environmentally relevant PFAS mixture on dopamine and steroid hormone levels in exposed mice. Toxicology and Applied Pharmacology, 2021, 428, 115670.	1.3	31
24	Exposure to Deepwater Horizon crude oil increases free cholesterol in larval red drum (Sciaenops) Tj ETQq0 0 0 rg	BT_ Overlo	ck 10 Tf 50
25	Dietary Seleno- <scp>I</scp> -methionine Alters the Microbial Communities and Causes Damage in the Gastrointestinal Tract of Japanese Medaka <i>Oryzias latipes</i> Environmental Science & S	4.6	19
26	Genetics and Oil: Transcriptomics, Epigenetics, and Population Genomics as Tools to Understand Animal Responses to Exposure Across Different Time Scales., 2020,, 515-532.		4
27	Transcriptomic Responses of Bisphenol S Predict Involvement of Immune Function in the Cardiotoxicity of Early Life-Stage Zebrafish (<i>Danio rerio</i>). Environmental Science & Eamp; Technology, 2020, 54, 2869-2877.	4.6	46
28	Metabolomic Profiles in the Brains of Juvenile Steelhead (<i>Oncorhynchus mykiss</i>) Following Bifenthrin Treatment. Environmental Science & Environm	4.6	16
29	Accumulation of HOCs via Precontaminated Microplastics by Earthworm <i>Eisenia fetida</i> i> in Soil. Environmental Science & E	4.6	52
30	The effects of diazinon on the cell types and gene expression of the olfactory epithelium and whole-body hormone concentrations in the Persian sturgeon (Acipenser persicus). Comparative Biochemistry and Physiology Part A, Molecular & Emp; Integrative Physiology, 2020, 250, 110809.	0.8	1
31	Effects of short-term exposure to environmentally-relevant concentrations of benzo(a)pyrene-sorbed polystyrene to White seabass (Atractoscion nobilis)â ⁺ †. Environmental Pollution, 2020, 263, 114617.	3.7	11
32	The use of non-targeted metabolomics to assess the toxicity of bifenthrin to juvenile Chinook salmon (Oncorhynchus tshawytscha). Aquatic Toxicology, 2020, 224, 105518.	1.9	24
33	Exposure to Crude Oil Induces Retinal Apoptosis and Impairs Visual Function in Fish. Environmental Science & Exposure Technology, 2020, 54, 2843-2850.	4.6	47
34	Degradation of contaminants of emerging concern by UV/H2O2 for water reuse: Kinetics, mechanisms, and cytotoxicity analysis. Water Research, 2020, 174, 115587.	5.3	66
35	Adverse outcome pathways in ecotoxicology. , 2020, , 569-579.		1
36	Effects of Chlorpyrifos on Cholinesterase and Serine Lipase Activities and Lipid Metabolism in Brains of Rainbow Trout (Oncorhynchus mykiss). Toxicological Sciences, 2019, 172, 146-154.	1.4	18

#	Article	IF	Citations
37	Occurrence and Probable Sources of Urban-Use Insecticides in Marine Sediments off the Coast of Los Angeles. Environmental Science & Environmental Scie	4.6	16
38	A Novel Water-Swelling Sampling Probe for in Vivo Detection of Neonicotinoids in Plants. Environmental Science & Environmental	4.6	27
39	Inference of Organophosphate Ester Emission History from Marine Sediment Cores Impacted by Wastewater Effluents. Environmental Science & Environmental	4.6	39
40	Assessing Toxicity and <i>in Vitro </i> Bioactivity of Smoked Cigarette Leachate Using Cell-Based Assays and Chemical Analysis. Chemical Research in Toxicology, 2019, 32, 1670-1679.	1.7	29
41	Effects of bifenthrin on sex differentiation in Japanese Medaka (Oryzias latipes). Environmental Research, 2019, 177, 108564.	3.7	8
42	Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environmental Pollution, 2019, 249, 776-784.	3.7	220
43	Whole-Transcriptome Sequencing of Epidermal Mucus as a Novel Method for Oil Exposure Assessment in Juvenile Mahi-Mahi (<i>Coryphaena hippurus</i>). Environmental Science and Technology Letters, 2019, 6, 538-544.	3.9	4
44	Glucocorticoid and mineralocorticoid receptors and corticosteroid homeostasis are potential targets for endocrine-disrupting chemicals. Environment International, 2019, 133, 105133.	4.8	37
45	Mechanisms behind interactive effects of temperature and bifenthrin on the predator avoidance behaviors in parr of chinook salmon (Oncorhynchus tshawytscha). Aquatic Toxicology, 2019, 216, 105312.	1.9	16
46	The effects of bifenthrin and temperature on the endocrinology of juvenile Chinook salmon. Environmental Toxicology and Chemistry, 2019, 38, 852-861.	2.2	25
47	Effects of corexit 9500A and Corexit-crude oil mixtures on transcriptomic pathways and developmental toxicity in early life stage mahi-mahi (Coryphaena hippurus). Aquatic Toxicology, 2019, 212, 233-240.	1.9	26
48	Modulation of Neuro-Dopamine Homeostasis in Juvenile Female Atlantic Cod (<i>Gadus morhua</i>) Exposed to Polycyclic Aromatic Hydrocarbons and Perfluoroalkyl Substances. Environmental Science & Envi	4.6	21
49	Fish and Seabird Gut Conditions Enhance Desorption of Estrogenic Chemicals from Commonly-Ingested Plastic Items. Environmental Science & Environmental	4.6	98
50	Deepwater Horizon crude oil exposure alters cholesterol biosynthesis with implications for developmental cardiotoxicity in larval mahi-mahi (Coryphaena hippurus). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 220, 31-35.	1.3	18
51	Endocrine disrupting effects of tebuconazole on different life stages of zebrafish (Danio rerio). Environmental Pollution, 2019, 249, 1049-1059.	3.7	74
52	A Direct Method for Quantifying the Effects of Aging on the Bioavailability of Legacy Contaminants in Soil and Sediment. Environmental Science and Technology Letters, 2019, 6, 148-152.	3.9	11
53	mRNA-miRNA-Seq Reveals Neuro-Cardio Mechanisms of Crude Oil Toxicity in Red Drum (<i>Sciaenops) Tj ETQq1</i>	1 0.78431 4.6	.4 rgBT /Ove
54	Review of and Recommendations for Monitoring Contaminants and their Effects in the San Francisco Bayâ^'Delta. San Francisco Estuary and Watershed Science, 2019, 17, .	0.2	3

#	Article	IF	CITATIONS
55	Differences in diet and biotransformation enzymes of coral reef butterflyfishes between Australia and Hawaii. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 216, 1-9.	1.3	0
56	Effect of aging on bioaccessibility of DDTs and PCBs in marine sediment. Environmental Pollution, 2019, 245, 582-589.	3.7	31
57	Evaluation of the estrogen receptor alpha as a possible target of bifenthrin effects in the estrogenic and dopaminergic signaling pathways in zebrafish embryos. Science of the Total Environment, 2019, 651, 2424-2431.	3.9	26
58	Simulated digestion of polystyrene foam enhances desorption of diethylhexyl phthalate (DEHP) and InÂvitro estrogenic activity in a size-dependent manner. Environmental Pollution, 2019, 246, 452-462.	3.7	53
59	Back Conversion from Product to Parent: Methyl Triclosan to Triclosan in Plants. Environmental Science and Technology Letters, 2018, 5, 181-185.	3.9	29
60	Impacts of Salinity and Temperature on the Thyroidogenic Effects of the Biocide Diuron in <i>Menidia beryllina</i> . Environmental Science & Environmen	4.6	23
61	The effect of chlorpyrifos on salinity acclimation of juvenile rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 2018, 195, 97-102.	1.9	11
62	Isolated and mixed effects of diuron and its metabolites on biotransformation enzymes and oxidative stress response of Nile tilapia (Oreochromis niloticus). Ecotoxicology and Environmental Safety, 2018, 149, 248-256.	2.9	28
63	Evaluation of different methods for assessing bioavailability of DDT residues during soil remediation. Environmental Pollution, 2018, 238, 462-470.	3.7	28
64	Alterations of secondary sex characteristics, reproductive histology and behaviors by norgestrel in the western mosquitoï¬sh (Gambusia affinis). Aquatic Toxicology, 2018, 198, 224-230.	1.9	24
65	Application and validation of isotope dilution method (IDM) for predicting bioavailability of hydrophobic organic contaminants in soil. Environmental Pollution, 2018, 236, 871-877.	3.7	8
66	Diuron metabolites act as endocrine disruptors and alter aggressive behavior in Nile tilapia (Oreochromis niloticus). Chemosphere, 2018, 191, 832-838.	4.2	41
67	Effects of bifenthrin exposure on the estrogenic and dopaminergic pathways in zebrafish embryos and juveniles. Environmental Toxicology and Chemistry, 2018, 37, 236-246.	2.2	44
68	Effects of HCO ₃ ^{â€"} on Degradation of Toxic Contaminants of Emerging Concern by UV/NO ₃ ^{â€"} . Environmental Science & Description of Emerging 12697-12707.	4.6	129
69	Challenges of Endocrine Disruption and Cardiac Development. , 2018, , 319-353.		2
70	Examining the role of estrogenic activity and ocean temperature on declines of a coastal demersal flatfish population near the municipal wastewater outfall of Orange County, California, USA. Marine Pollution Bulletin, 2018, 137, 129-136.	2.3	1
71	Comparisons of analytical chemistry and biological activities of extracts from North Pacific gyre plastics with UV-treated and untreated plastics using in vitro and in vivo models. Environment International, 2018, 121, 942-954.	4.8	47
72	Changes in microRNA–mRNA Signatures Agree with Morphological, Physiological, and Behavioral Changes in Larval Mahi-Mahi Treated with ⟨i⟩Deepwater Horizon⟨/i⟩ Oil. Environmental Science & Technology, 2018, 52, 13501-13510.	4.6	25

#	Article	IF	CITATIONS
73	Effects of acute and chronic exposures of fluoxetine on the Chinese fish, topmouth gudgeon Pseudorasbora parva. Ecotoxicology and Environmental Safety, 2018, 160, 104-113.	2.9	32
74	Selenium accumulation and the effects on the liver of topmouth gudgeon Pseudorasbora parva exposed to dissolved inorganic selenium. Ecotoxicology and Environmental Safety, 2018, 160, 240-248.	2.9	7
75	Changes in thyroid status of Menidia beryllina exposed to the antifouling booster irgarol: Impacts of temperature and salinity. Chemosphere, 2018, 209, 857-865.	4.2	7
76	Efficient degradation of cytotoxic contaminants of emerging concern by UV/H ₂ O ₂ . Environmental Science: Water Research and Technology, 2018, 4, 1272-1281.	1.2	19
77	Stable Isotope Labeling-Assisted Metabolite Probing for Emerging Contaminants in Plants. Analytical Chemistry, 2018, 90, 11040-11047.	3.2	26
78	Cyto- and geno-toxicity of 1,4-dioxane and its transformation products during ultraviolet-driven advanced oxidation processes. Environmental Science: Water Research and Technology, 2018, 4, 1213-1218.	1.2	24
79	Historical record and fluxes of DDTs at the Palos Verdes Shelf Superfund site, California. Science of the Total Environment, 2017, 581-582, 697-704.	3.9	17
80	Contribution of G protein-coupled estrogen receptor 1 (GPER) to $17\hat{l}^2$ -estradiol-induced developmental toxicity in zebrafish. Aquatic Toxicology, 2017, 186, 180-187.	1.9	13
81	Analysis of transcriptional responses of normalizing genes on <i>Crassostrea brasiliana</i> under different experimental conditions. Environmental Toxicology and Chemistry, 2017, 36, 2190-2198.	2.2	1
82	Direct Conjugation of Emerging Contaminants in <i>Arabidopsis</i> : Indication for an Overlooked Risk in Plants?. Environmental Science & Environmental	4.6	58
83	Developmental toxicity of hydroxylated chrysene metabolites in zebrafish embryos. Aquatic Toxicology, 2017, 189, 77-86.	1.9	46
84	Comparisons of field and laboratory estimates of risk of DDTs from contaminated sediments to humans that consume fish in Palos Verdes, California, USA. Science of the Total Environment, 2017, 601-602, 1139-1146.	3.9	4
85	Novel transcriptome assembly and comparative toxicity pathway analysis in mahi-mahi (Coryphaena) Tj ETQq $1\ 1$	0.784314 1.6	1 rgBT /Overlo
86	Formation of bioactive transformation products during glucocorticoid chlorination. Environmental Science: Water Research and Technology, 2017, 3, 450-461.	1.2	13
87	Larval Red Drum (<i>Sciaenops ocellatus</i>) Sublethal Exposure to Weathered Deepwater Horizon Crude Oil: Developmental and Transcriptomic Consequences. Environmental Science & Emp; Technology, 2017, 51, 10162-10172.	4.6	91
88	Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Research, 2017, 124, 527-542.	5.3	209
89	Differential Expression of MicroRNAs in Embryos and Larvae of Mahi-Mahi (<i>Coryphaena) Tj ETQq1 1 0.784314 Letters, 2017, 4, 523-529.</i>	4 rgBT /Ov 3.9	erlock 10 Tf 15
90	Conversion of Pyrethroid Insecticides to 3-Phenoxybenzoic Acid on Urban Hard Surfaces. Environmental Science and Technology Letters, 2017, 4, 546-550.	3.9	10

#	Article	IF	CITATIONS
91	Developmental expression and regulation of flavin-containing monooxygenase by the unfolded protein response in Japanese medaka (Oryzias latipes). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2017, 191, 7-13.	1.3	3
92	Developmental transcriptomic analyses for mechanistic insights into critical pathways involved in embryogenesis of pelagic mahi-mahi (Coryphaena hippurus). PLoS ONE, 2017, 12, e0180454.	1.1	10
93	Effects of environmental exposure to diazepam on the reproductive behavior of fathead minnow, <scp><i>><i>>< i>>< i>>< b>< scp><i> scp><i> scp><i> scp><i> scp><i> scp><i> scp>< </i></i></i></i></i></i></i></i></scp>	2.1	20
94	Stage susceptibility of Japanese medaka (<i>Oryzias latipes</i>) to selenomethionine and hypersaline developmental toxicity. Environmental Toxicology and Chemistry, 2016, 35, 1247-1256.	2.2	12
95	A tiered, integrated biological and chemical monitoring framework for contaminants of emerging concern in aquatic ecosystems. Integrated Environmental Assessment and Management, 2016, 12, 540-547.	1.6	33
96	Estrogenic activities of diuron metabolites in female Nile tilapia (Oreochromis niloticus). Chemosphere, 2016, 146, 497-502.	4.2	30
97	Trophic transfer and effects of DDT in male hornyhead turbot (Pleuronichthys verticalis) from Palos Verdes Superfund site, CA (USA) and comparisons to field monitoring. Environmental Pollution, 2016, 213, 940-948.	3.7	5
98	Spatial and temporal assessment of environmental contaminants in water, sediments and fish of the Salton Sea and its two primary tributaries, California, USA, from 2002 to 2012. Science of the Total Environment, 2016, 559, 130-140.	3.9	33
99	Molecular mechanisms of selenium-Induced spinal deformities in fish. Aquatic Toxicology, 2016, 179, 143-150.	1.9	27
100	Pyrethroid Pesticides as Endocrine Disruptors: Molecular Mechanisms in Vertebrates with a Focus on Fishes. Environmental Science & Environmental Scien	4.6	190
101	Effects of alkylphenols on the biotransformation of diuron and enzymes involved in the synthesis and clearance of sex steroids in juvenile male tilapia (Oreochromus mossambica). Aquatic Toxicology, 2016, 180, 345-352.	1.9	15
102	Influence of Temperature on the Thyroidogenic Effects of Diuron and Its Metabolite 3,4-DCA in Tadpoles of the American Bullfrog (<i>Lithobates catesbeianus</i>). Environmental Science & Eamp; Technology, 2016, 50, 13095-13104.	4.6	40
103	Time- and Oil-Dependent Transcriptomic and Physiological Responses to <i>Deepwater Horizon</i> Oil in Mahi-Mahi (<i>Coryphaena hippurus</i>) Embryos and Larvae. Environmental Science & Emp; Technology, 2016, 50, 7842-7851.	4.6	123
104	Developmental alterations and endocrine-disruptive responses in farmed Nile crocodiles () Tj ETQq0 0 0 rgBT /Over Toxicology, 2016, 173, 83-93.	rlock 10 Tf 1.9	50 227 Td 13
105	Age-dependent effects in fathead minnows from the anti-diabetic drug metformin. General and Comparative Endocrinology, 2016, 232, 185-190.	0.8	56
106	Assessing and Reducing the Toxicity of 3D-Printed Parts. Environmental Science and Technology Letters, 2016, 3, 1-6.	3.9	157
107	Hard coral (Porites lobata) extracts and homarine on cytochrome P450 expression in Hawaiian butterflyfishes with different feeding strategies. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2016, 179, 57-63.	1.3	2
108	Biochemical Mechanisms for Geographical Adaptations to Novel Toxin Exposures in Butterflyfish. PLoS ONE, 2016, 11, e0154208.	1.1	7

#	Article	IF	CITATIONS
109	Biochemical responses, morphometric changes, genotoxic effects and CYP1A expression in the armored catfish Pterygoplichthys anisitsi after 15 days of exposure to mineral diesel and biodiesel. Ecotoxicology and Environmental Safety, 2015, 115, 26-32.	2.9	16
110	Occurrence of Halogenated Transformation Products of Selected Pharmaceuticals and Personal Care Products in Secondary and Tertiary Treated Wastewaters from Southern California. Environmental Science & Environmental Science	4.6	90
111	Effects of pyrethroid insecticides in urban runoff on Chinook salmon, steelhead trout, and their invertebrate prey. Environmental Toxicology and Chemistry, 2015, 34, 649-657.	2.2	37
112	Sublethal toxicity of chlorpyrifos to salmonid olfaction after hypersaline acclimation. Aquatic Toxicology, 2015, 161, 94-101.	1.9	26
113	Interlaboratory comparison of inÂvitro bioassays for screening of endocrine active chemicals in recycled water. Water Research, 2015, 83, 303-309.	5. 3	53
114	The effect of bifenthrin on the dopaminergic pathway in juvenile rainbow trout (Oncorhynchus) Tj ETQq0 0 0 rg	BT 1.9verlo	ock 10 Tf 50 5
115	Anti-androgenic activities of diuron and its metabolites in male Nile tilapia (Oreochromis niloticus). Aquatic Toxicology, 2015, 164, 10-15.	1.9	39
116	Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 172-173, 19-25.	1.3	75
117	Oxidative Stress, Unfolded Protein Response, and Apoptosis in Developmental Toxicity. International Review of Cell and Molecular Biology, 2015, 317, 1-66.	1.6	65
118	Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus) Tj ETQq0 0 0	rgBT/Ove 1.1	rlock 10 Tf 50
119	Application of a targeted endocrine q-PCR panel to monitor the effects of pollution in southern California flatfish. Endocrine Disruptors (Austin, Tex), 2014, 2, e969598.	1.1	8
120	An Adaptive, Comprehensive Monitoring Strategy for Chemicals of Emerging Concern (CECs) in California's Aquatic Ecosystems. Integrated Environmental Assessment and Management, 2014, 10, 69-77.	1.6	44
121	Biological responses of marine flatfish exposed to municipal wastewater effluent. Environmental Toxicology and Chemistry, 2014, 33, 583-591.	2.2	5
122	Bioaccumulation of organochlorine contaminants and ethoxyresorufinâ€ <i>o</i> àêdeethylase activity in southern California round stingrays (<i>Urobatis halleri</i>) exposed to planar aromatic compounds. Environmental Toxicology and Chemistry, 2014, 33, 1380-1390.	2.2	39
123	Evaluation of the stereoselective biotransformation of permethrin in human liver microsomes: Contributions of cytochrome P450 monooxygenases to the formation of estrogenic metabolites. Toxicology Letters, 2014, 226, 192-197.	0.4	20
124	Trenbolone acetate metabolites promote ovarian growth and development in adult Japanese medaka (Oryzias latipes). General and Comparative Endocrinology, 2014, 202, 1-7.	0.8	12
125	Effects of salinity acclimation on the expression and activity of Phase I enzymes (CYP450 and FMOs) in coho salmon (Oncorhynchus kisutch). Fish Physiology and Biochemistry, 2014, 40, 267-278.	0.9	16
126	Mechanisms of Selenomethionine Developmental Toxicity and the Impacts of Combined Hypersaline Conditions on Japanese Medaka (<i>Oryzias latipes</i>). Environmental Science &	4.6	22

#	Article	IF	Citations
127	Environmental Designer Drugs: When Transformation May Not Eliminate Risk. Environmental Science & Envi	4.6	75
128	Use of Isotope Dilution Method To Predict Bioavailability of Organic Pollutants in Historically Contaminated Sediments. Environmental Science & Enviro	4.6	17
129	Benchmarking Organic Micropollutants in Wastewater, Recycled Water and Drinking Water with In Vitro Bioassays. Environmental Science & Environmental S	4.6	367
130	Integration of multi-level biomarker responses to cadmium and benzo[k]fluoranthene in the pale chub (Zacco platypus). Ecotoxicology and Environmental Safety, 2014, 110, 121-128.	2.9	31
131	Impacts of hypersaline acclimation on the acute toxicity of the organophosphate chlorpyrifos to salmonids. Aquatic Toxicology, 2014, 152, 284-290.	1.9	14
132	Effects of salinity acclimation on the pesticide-metabolizing enzyme flavin-containing monooxygenase (FMO) in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2013, 157, 9-15.	1.3	11
133	Genomic and phenotypic response of hornyhead turbot exposed to municipal wastewater effluents. Aquatic Toxicology, 2013, 140-141, 174-184.	1.9	17
134	The effects of the pyrethroid insecticide, bifenthrin, on steroid hormone levels and gonadal development of steelhead (Oncorhynchus mykiss) under hypersaline conditions. General and Comparative Endocrinology, 2013, 186, 101-107.	0.8	45
135	Identification and Environmental Implications of Photo-Transformation Products of Trenbolone Acetate Metabolites. Environmental Science & Environmenta	4.6	47
136	Effects of salinity acclimation on the endocrine disruption and acute toxicity of bifenthrin in freshwater and euryhaline strains of <i>Oncorhynchus mykiss</i> . Environmental Toxicology and Chemistry, 2013, 32, 2779-2785.	2.2	20
137	Predicted transport of pyrethroid insecticides from an urban landscape to surface water. Environmental Toxicology and Chemistry, 2013, 32, 2469-2477.	2.2	22
138	Molecular Analysis of Endocrine Disruption in Hornyhead Turbot at Wastewater Outfalls in Southern California Using a Second Generation Multi-Species Microarray. PLoS ONE, 2013, 8, e75553.	1.1	27
139	Annual and seasonal evaluation of reproductive status in hornyhead turbot at municipal wastewater outfalls in the Southern California Bight. Environmental Toxicology and Chemistry, 2012, 31, 2701-2710.	2.2	18
140	Integrated coastal effects study: Synthesis of findings. Environmental Toxicology and Chemistry, 2012, 31, 2711-2722.	2.2	13
141	Evaluation of reproductive endocrine status in hornyhead turbot sampled from Southern California's urbanized coastal environments. Environmental Toxicology and Chemistry, 2012, 31, 2689-2700.	2.2	6
142	Estrogen receptor-hijacking by dioxin-like 3,3′4,4′,5-pentachlorobiphenyl (PCB126) in salmon hepatocytes involves both receptor activation and receptor protein stability. Aquatic Toxicology, 2012, 124-125, 197-208.	1.9	14
143	A Perspective on Modern Pesticides, Pelagic Fish Declines, and Unknown Ecological Resilience in Highly Managed Ecosystems. BioScience, 2012, 62, 428-434.	2.2	76
144	Analytical and Biological Characterization of Halogenated Gemfibrozil Produced through Chlorination of Wastewater. Environmental Science & Environment	4.6	47

#	Article	IF	Citations
145	Reconstitution Studies of Pesticides and Surfactants Exploring the Cause of Estrogenic Activity Observed in Surface Waters of the San Francisco Bay Delta. Environmental Science & Explored & Explored Science & Explored Science & Explored Science & Explored & Explored Science & Explored & Explored & Explored & Explore	4.6	40
146	Effects of salinity on the toxicity and biotransformation of l-selenomethionine in Japanese medaka (Oryzias latipes) embryos: Mechanisms of oxidative stress. Aquatic Toxicology, 2012, 108, 18-22.	1.9	35
147	Effects of exposure to the \hat{l}^2 -blocker propranolol on the reproductive behavior and gene expression of the fathead minnow, Pimephales promelas. Aquatic Toxicology, 2012, 116-117, 8-15.	1.9	34
148	Effects of propranolol on heart rate and development in Japanese medaka (Oryzias latipes) and zebrafish (Danio rerio). Aquatic Toxicology, 2012, 122-123, 214-221.	1.9	45
149	Hypersalinity Acclimation Increases the Toxicity of the Insecticide Phorate in Coho Salmon (<i>Oncorhynchus kisutch</i>). Environmental Science & Envi	4.6	25
150	Microsomal biotransformation of chlorpyrifos, parathion and fenthion in rainbow trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch): Mechanistic insights into interspecific differences in toxicity. Aquatic Toxicology, 2011, 101, 57-63.	1.9	28
151	Impacts of climate change on hypersaline conditions of estuaries and xenobiotic toxicity. Aquatic Toxicology, 2011, 105, 78-82.	1.9	43
152	Bioassay Guided Fractionation (Toxicity Identification and Evaluation) for the Determination of Estrogenic Agents in Environmental Samples. ACS Symposium Series, 2010, , 519-537.	0.5	0
153	Sorption of Estrogens onto Different Fractions of Sediment and Its Effect on Vitellogenin Expression in Male Japanese Medaka. Archives of Environmental Contamination and Toxicology, 2010, 59, 147-156.	2.1	26
154	Chirality of organophosphorus pesticides: Analysis and toxicity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 1277-1284.	1.2	70
155	Stereoselective Biotransformation of Permethrin to Estrogenic Metabolites in Fish. Chemical Research in Toxicology, 2010, 23, 1568-1575.	1.7	46
156	Analysis of Endocrine Disruption in Southern California Coastal Fish using an Aquatic Multi-Species Microarray. Nature Precedings, 2009, , .	0.1	1
157	Characterization of Sulfoxygenation and Structural Implications of Human Flavin-Containing Monooxygenase Isoform 2 (FMO2.1) Variants S195L and N413K. Drug Metabolism and Disposition, 2009, 37, 1785-1791.	1.7	10
158	Analysis of Endocrine Disruption in Southern California Coastal Fish Using an Aquatic Multispecies Microarray. Environmental Health Perspectives, 2009, 117, 223-230.	2.8	52
159	Mechanisms of fenthion activation in rainbow trout (Oncorhynchus mykiss) acclimated to hypersaline environments. Toxicology and Applied Pharmacology, 2009, 235, 143-152.	1.3	36
160	Enantioselectivity in fipronil aquatic toxicity and degradation. Environmental Toxicology and Chemistry, 2009, 28, 1825-1833.	2.2	49
161	A toxicity monitoring study on identification and reduction of toxicants from a wastewater treatment plant. Ecotoxicology and Environmental Safety, 2009, 72, 1919-1924.	2.9	17
162	Site-specific effects of $17\hat{1}^2$ -estradiol in hornyhead turbot (Pleuronichthys verticalis) collected from a wastewater outfall and reference location. Environmental Research, 2009, 109, 552-558.	3.7	13

#	Article	IF	Citations
163	The effect of particle size on the bioavailability of estrogenic chemicals from sediments. Chemosphere, 2009, 76, 395-401.	4.2	44
164	Effect of hyperosmotic conditions on flavin-containing monooxygenase activity, protein and mRNA expression in rat kidney. Toxicology Letters, 2009, 187, 115-118.	0.4	4
165	Site-Specific Profiles of Estrogenic Activity in Agricultural Areas of California's Inland Waters. Environmental Science & Technology, 2009, 43, 9110-9116.	4.6	34
166	Species differences and effects of soft coral extracts from SinnulariaÂmaximus on the expression of cytochrome P4501A and 2N in butterflyfishes (Chaetodon spp.). Fish Physiology and Biochemistry, 2008, 34, 483-492.	0.9	13
167	Are steroids really the cause for fish feminization? A mini-review of in vitro and in vivo guided TIEs. Marine Pollution Bulletin, 2008, 57, 250-254.	2.3	24
168	Effects of Environmental Estrogens and Antiandrogens on Endocrine Function, Gene Regulation, and Health in Fish. International Review of Cell and Molecular Biology, 2008, 267, 207-252.	1.6	83
169	Uptake of estradiol from sediment by hornyhead turbot (Pleuronichthys verticalis) and effects on oxidative DNA damage in male gonads. Marine Environmental Research, 2008, 66, 111-112.	1.1	12
170	Estrogenic activity and reproductive effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl-methanone) in fish. Aquatic Toxicology, 2008, 90, 182-187.	1.9	199
171	Characterization of muscle cholinesterases from two demersal flatfish collected near a municipal wastewater outfall in Southern California. Ecotoxicology and Environmental Safety, 2008, 69, 466-471.	2.9	49
172	Characterization of Phase I biotransformation enzymes in coho salmon (Oncorhynchus kisutch). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2008, 147, 78-84.	1.3	23
173	Osmotic Regulation of a Novel Flavin-Containing Monooxygenase in Primary Cultured Cells from Rainbow Trout (<i>Oncorhynchus mykiss</i>). Drug Metabolism and Disposition, 2008, 36, 1212-1217.	1.7	15
174	Biomonitoring Recycled Water in the Santa Ana River Basin in Southern California. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 109-118.	1.1	5
175	Biomarkers. , 2008, , 683-731.		32
176	Biotransformation in Fishes. , 2008, , 153-234.		91
177	The copepod Tigriopus: A promising marine model organism for ecotoxicology and environmental genomics. Aquatic Toxicology, 2007, 83, 161-173.	1.9	295
178	Synthesis of Fenthion Sulfoxide and Fenoxon Sulfoxide Enantiomers:  Effect of Sulfur Chirality on Acetylcholinesterase Activity. Chemical Research in Toxicology, 2007, 20, 257-262.	1.7	30
179	Enantioselectivity in Estrogenic Potential and Uptake of Bifenthrin. Environmental Science & Emp; Technology, 2007, 41, 6124-6128.	4.6	151
180	Allele and genotype frequencies of polymorphicFMO3 gene in two genetically distinct populations. Cell Biochemistry and Function, 2007, 25, 443-453.	1.4	13

#	Article	IF	Citations
181	Seasonal evaluation of reproductive status and exposure to environmental estrogens in hornyhead turbot at the municipal wastewater outfall of Orange County, CA. Environmental Toxicology, 2007, 22, 464-471.	2.1	20
182	Impacts of hypersaline water on the biotransformation and toxicity of fenthion on rainbow trout (Oncorhynchus mykiss), striped bass (Morone saxatilis X Morone chrysops) and tilapia (Oreochromis) Tj ETQq0 0	O1r. g BT/C	verøock 10 T
183	Enantioselective acetylcholinesterase inhibition of the organophosphorous insecticides profenofos, fonofos, and crotoxyphos. Environmental Toxicology and Chemistry, 2007, 26, 1949-1954.	2.2	42
184	Evaluation of relationships between reproductive metrics, gender and vitellogenin expression in demersal flatfish collected near the municipal wastewater outfall of Orange County, California, USA. Aquatic Toxicology, 2006, 77, 241-249.	1.9	59
185	CONCENTRATION OF CONTAMINANTS IN BREEDING BIRD EGGS FROM THE COLORADO RIVER DELTA, MEXICO. Environmental Toxicology and Chemistry, 2006, 25, 1640.	2.2	17
186	Haplotype Frequency Distribution and Linkage Disequilibrium Analysis of Single Nucleotide Polymorphisms at the Human FMO3 Gene Locus. Biochemical Genetics, 2006, 44, 388-404.	0.8	8
187	Effects of pentachlorophenol on the reproduction of Japanese medaka (Oryzias latipes). Chemico-Biological Interactions, 2006, 161, 26-36.	1.7	49
188	IN VIVO BIOASSAY-GUIDED FRACTIONATION OF MARINE SEDIMENT EXTRACTS FROM THE SOUTHERN CALIFORNIA BIGHT, USA, FOR ESTROGENIC ACTIVITY. Environmental Toxicology and Chemistry, 2005, 24, 2820.	2.2	83
189	Incidence of organochlorine pesticides in muscle and liver tissues of South African great white sharks Carcharodon carcharias. Marine Pollution Bulletin, 2005, 50, 208-211.	2.3	43
190	EXTRAHEPATIC METABOLISM OF CARBAMATE AND ORGANOPHOSPHATE THIOETHER COMPOUNDS BY THE FLAVIN-CONTAINING MONOOXYGENASE AND CYTOCHROME P450 SYSTEMS. Drug Metabolism and Disposition, 2005, 33, 214-218.	1.7	44
191	Evaluation of Estrogenic Activities of Aquatic Herbicides and Surfactants Using an Rainbow Trout Vitellogenin Assay. Toxicological Sciences, 2005, 87, 391-398.	1.4	82
192	Chapter 6 Pesticide biotransformation in fish. Biochemistry and Molecular Biology of Fishes, 2005, 6, 171-190.	0.5	31
193	Enantioselectivity in environmental safety of current chiral insecticides. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 701-706.	3.3	444
194	Evaluation of the relationships between biochemical endpoints of PAH exposure and physiological endpoints of reproduction in male California Halibut (Paralichthys californicus) exposed to sediments from a natural oil seep. Marine Environmental Research, 2005, 60, 454-465.	1.1	41
195	Evaluation of pesticides and metals in fish of the Dniester River, Moldova. Chemosphere, 2005, 60, 196-205.	4.2	47
196	Evaluation of Xenobiotic N- and S-Oxidation by Variant Flavin-Containing Monooxygenase 1 (FMO1) Enzymes. Toxicological Sciences, 2004, 78, 196-203.	1.4	48
197	Pesticides and PCBs in sediments and fish from the Salton Sea, California, USA. Chemosphere, 2004, 55, 797-809.	4.2	167
198	Unique monooxygenation pattern indicates novel flavin-containing monooxygenase in liver of rainbow trout. Marine Environmental Research, 2004, 58, 499-503.	1.1	9

#	Article	IF	Citations
199	The relationships of biochemical endpoints to histopathology and population metrics in feral flatfish species collected near the municipal wastewater outfall of Orange County, California, USA. Environmental Toxicology and Chemistry, 2003, 22, 1309-1317.	2.2	35
200	Effects of Salinity on the Uptake, Biotransformation, and Toxicity of Dietary Seleno-L-Methionine to Rainbow Trout. Toxicological Sciences, 2003, 75, 309-313.	1.4	24
201	Biochemical effects of petroleum exposure in hornyhead turbot (Pleuronichthys verticalis) exposed to a gradient of sediments collected from a natural petroleum seep in CA, USA. Aquatic Toxicology, 2003, 65, 159-169.	1.9	41
202	Effects of the brominated phenol, lanosol, on cytochrome P-450 and glutathione transferase activities in Haliotis rufescens and Katharina tunicata. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2003, 134, 473-479.	1.3	8
203	Comparison of in Vitro and in Vivo Bioassays for Estrogenicity in Effluent from North American Municipal Wastewater Facilities. Toxicological Sciences, 2003, 72, 77-83.	1.4	82
204	Identification of Novel Variants of the Flavin-Containing Monooxygenase Gene Family in African Americans. Drug Metabolism and Disposition, 2003, 31, 187-193.	1.7	67
205	TWO NEW POLYMORPHISMS OF THE FMO3 GENE IN CAUCASIAN AND AFRICAN-AMERICAN POPULATIONS: COMPARATIVE GENETIC AND FUNCTIONAL STUDIES. Drug Metabolism and Disposition, 2003, 31, 854-860.	1.7	72
206	Biochemical and Clinical Aspects of the Human Flavin-Containing Monooxygenase Form 3 (FMO3) Related to Trimethylaminuria. Current Drug Metabolism, 2003, 4, 151-170.	0.7	97
207	Effect of 17beta-Estradiol and Testosterone on the Expression of Flavin-Containing Monooxygenase and the Toxicity of Aldicarb to Japanese Medaka, Oryzias latipes. Toxicological Sciences, 2002, 68, 381-388.	1.4	35
208	Estrogenic responses of larval sunshine bass (Morone saxatilis $\tilde{A}-M$. Chrysops) exposed to New York city sewage effluent. Marine Environmental Research, 2002, 54, 691-695.	1.1	30
209	Evaluation of estrogenic activity from a municipal wastewater treatment plant with predominantly domestic input. Aquatic Toxicology, 2002, 61, 211-224.	1.9	94
210	Gender differences in the effect of salinity on aldicarb uptake, elimination, and in vitro metabolism in Japanese medaka, Oryzias latipes. Aquatic Toxicology, 2002, 61, 225-232.	1.9	11
211	Role of human flavin-containing monooxygenases in the sulfoxidation of [14C]aldicarb. Pesticide Biochemistry and Physiology, 2002, 73, 67-73.	1.6	23
212	Analyses of organic and inorganic contaminants in Salton Sea fish. Marine Pollution Bulletin, 2002, 44, 403-411.	2.3	21
213	Predicting chemical contaminants in freshwater sediments through the use of historical biochemical endpoints in resident fish species. Environmental Toxicology and Chemistry, 2002, 21, 2138-2145.	2.2	14
214	Effects of the Oxidant Potassium Permanganate on the Expression of Gill Metallothionein mRNA and Its Relationship to Sublethal Whole Animal Endpoints in Channel Catfish. Toxicological Sciences, 2000, 54, 177-182.	1.4	18
215	Estrogenic and CYP1A response of mummichogs and sunshine bass to sewage effluent. Marine Environmental Research, 2000, 50, 175-179.	1.1	34
216	Comparative vitellogenic responses in three teleost species: extrapolation to in situ field studies. Marine Environmental Research, 2000, 50, 185-189.	1.1	50

#	Article	IF	Citations
217	Hepatic microsomal desulfuration and dearylation of chlorpyrifos and parathion in fingerling channel catfish: lack of effect from Aroclor 1254. Aquatic Toxicology, 2000, 50, 141-151.	1.9	19
218	Effect of Simulated Copper Sulfate Therapy on Stress Indicators in Channel Catfish. Journal of Aquatic Animal Health, 1999, 11, 231-236.	0.6	22
219	Necessity of Defining Biomarkers for Use in Ecological Risk Assessments. Marine Pollution Bulletin, 1999, 39, 48-53.	2.3	57
220	Effects of ultraviolet-B light and polyaromatic hydrocarbon exposure on sea urchin development and bacterial bioluminescence. Marine Environmental Research, 1999, 48, 439-457.	1.1	39
221	Relationship between expression of hepatic metallothionein and sublethal stress in channel catfish following acute exposure to copper sulphate. Aquaculture, 1999, 177, 367-379.	1.7	46
222	Alterations in Physiological Parameters of Rainbow Trout (Oncorhynchus mykiss) with Exposure to Copper and Copper/Zinc Mixtures. Ecotoxicology and Environmental Safety, 1999, 42, 253-264.	2.9	91
223	Potential Mechanisms of the Enhancement of Aldicarb Toxicity to Japanese Medaka, Oryzias latipes, at High Salinity. Toxicology and Applied Pharmacology, 1998, 152, 175-183.	1.3	34
224	Effect of zinc and cadmium treatment on hydrogen peroxide-induced mortality and expression of glutathione and metallothionein in a teleost hepatoma cell line. Aquatic Toxicology, 1998, 43, 121-129.	1.9	52
225	Cross-reactivity of monoclonal antibodies against peptide 277–294 of rainbow trout CYP1A1 with hepatic CYP1A among fish. Marine Environmental Research, 1998, 46, 87-91.	1.1	42
226	Immunochemical characterization of hepatic cytochrome P450 isozymes in the channel catfish: assessment of sexual, developmental and treatment-related effects. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1998, 121, 305-310.	0.5	17
227	Occurrence of flavin-containing monooxygenases in non-mammalian eukaryotic organisms. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1998, 121, 185-195.	0.5	33
228	Efficacy of Copper Sulfate for the Treatment of Ichthyophthiriasis in Channel Catfish. Journal of Aquatic Animal Health, 1998, 10, 390-396.	0.6	68
229	Efficacy of Copper Sulfate for the Treatment of Ichthyophthiriasis in Channel Catfish., 1998, 10, 390.		1
230	Characterization of hepatic metallothionein expression in channel catfish (Ictalurus punctatus) by reverse transcriptase polymerase chain reaction. Biomarkers, 1997, 2, 161-167.	0.9	24
231	Effect of Waterborne Copper Sulfate Exposure on Copper Content in Liver and Axial Muscle of Channel Catfish. Journal of Aquatic Animal Health, 1997, 9, 144-150.	0.6	16
232	Sexual differences in mortality and sublethal stress in channel catfish following a 10 week exposure to copper sulfate. Aquatic Toxicology, 1997, 37, 327-339.	1.9	40
233	Comparisons of Uptake and Depuration of 2-Methylisoborneol in Male, Female, Juvenile, and 3MC-induced Channel Catfish Ictalurus punctatus. Journal of the World Aquaculture Society, 1997, 28, 158-164.	1.2	8
234	Channel catfish glutathione S-transferase isoenzyme activity toward (±)-anti-benzo[a]pyrene-trans-7,8-dihydrodiol-9, 10-epoxide. Aquatic Toxicology, 1996, 34, 135-150.	1.9	36

#	Article	IF	CITATIONS
235	Correction of salinity with flavin-containing monooxygenase activity but not cytochrome P450 activity in the euryhaline fish (Platichthys flesus). Biochemical Pharmacology, 1996, 52, 815-818.	2.0	26
236	The role of biomarkers in risk assessment. Human and Ecological Risk Assessment (HERA), 1996, 2, 251-256.	1.7	19
237	Induction and characterization of hepatic metallothionein expression from cadmiumâ€induced channel catfish (<i>lctalurus punctatus</i>). Environmental Toxicology and Chemistry, 1995, 14, 1425-1431.	2.2	25
238	Expression of Hepatic Metallothionein Messenger RNA in Feral and Caged Fish Species Correlates with Muscle Mercury Levels. Ecotoxicology and Environmental Safety, 1995, 31, 282-286.	2.9	42
239	Immune Function and Cytochrome P4501A Activity after Acute Exposure to 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) in Channel Catfish. Journal of Aquatic Animal Health, 1995, 7, 195-204.	0.6	52
240	Characterization of liver flavin-containing monooxygenase of the dogfish shark (Squalus acanthias) and partial purification of liver flavin-containing monooxygenase of the silky shark (Carcharhinus) Tj ETQq0 0 0 rg 655-664.	gBT/Overl	ock 10 Tf 50 !
241	Induction of metallothionein mRNA in the blue crab (Callinectes sapidus) after treatment with cadmium. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1993, 104, 317-321.	0.2	7
242	Channel catfish liver monooxygenases. Biochemical Pharmacology, 1993, 45, 217-221.	2.0	33
243	A comparison of endogenous and exogenous substrates of the flavin-containing monooxygenases in aquatic organisms. Aquatic Toxicology, 1993, 26, 157-162.	1.9	22
244	Immunological characterization of flavin-containing monooxygenases from the liver of rainbow trout (Oncorhynchus mykiss): sexual- and age-dependent differences and the effect of trimethylamine on enzyme regulation. Biochimica Et Biophysica Acta - General Subjects, 1993, 1156, 103-106.	1.1	16
245	Crustaceans as models for metal metabolism: II. Induction and characterization of metallothionein isoforms from the blue crab (Callinectes sapidus). Marine Environmental Research, 1993, 35, 7-11.	1.1	12
246	Metal-specific induction of metallothionein isoforms in the blue crab Callinectes sapidus in response to single- and mixed-metal exposure. Archives of Biochemistry and Biophysics, 1992, 294, 461-468.	1.4	62
247	Flavin-containing monooxygenase activity in liver microsomes from the rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 1991, 20, 13-23.	1.9	29
248	Isolation of three copper metallothionein isoforms from the blue crab (Callinectes sapidus). Aquatic Toxicology, 1991, 20, 25-33.	1.9	29
249	The <i>iin vitro</i> biotransformation of 2-aminofluorene in the visceral mass of the Pacific oyster, <i>Crassostrea gigas</i> . Xenobiotica, 1990, 20, 563-572.	0.5	5
250	Xenobiotic biotransformation in the pacific oyster (Crassostrea gigas). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1989, 94, 469-475.	0.2	18
251	Determination of multiple forms of cytochrome P-450 in microsomes from the digestive gland of Cryptochitonstelleri. Biochemical and Biophysical Research Communications, 1989, 163, 476-480.	1.0	22
252	Cytochrome P-450 and Phase II activities in the gumboot chiton Cryptochiton stelleri. Aquatic Toxicology, 1988, 13, 167-182.	1.9	33