Guido Van den Ackerveken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2482763/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Grapevine DMR6-1 Is a Candidate Gene for Susceptibility to Downy Mildew. Biomolecules, 2022, 12, 182.	1.8	14
2	Sexual reproduction contributes to the evolution of resistanceâ€breaking isolates of the spinach pathogen <i>Peronospora effusa</i> . Environmental Microbiology, 2022, 24, 1622-1637.	1.8	8
3	Sensor-based phenotyping of above-ground plant-pathogen interactions. Plant Methods, 2022, 18, 35.	1.9	14
4	Structure-guided analysis of Arabidopsis JASMONATE-INDUCED OXYGENASE (JOX) 2 reveals key residues for recognition of jasmonic acid substrate by plant JOXs. Molecular Plant, 2021, 14, 820-828.	3.9	20
5	Stop helping pathogens: engineering plant susceptibility genes for durable resistance. Current Opinion in Biotechnology, 2021, 70, 187-195.	3.3	38
6	Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen. New Phytologist, 2021, 232, 2491-2505.	3.5	9
7	The Genome of <i>Peronospora belbahrii</i> Reveals High Heterozygosity, a Low Number of Canonical Effectors, and TC-Rich Promoters. Molecular Plant-Microbe Interactions, 2020, 33, 742-753.	1.4	15
8	Genome reconstruction of the non-culturable spinach downy mildew Peronospora effusa by metagenome filtering. PLoS ONE, 2020, 15, e0225808.	1.1	14
9	Host interactors of effector proteins of the lettuce downy mildew Bremia lactucae obtained by yeast two-hybrid screening. PLoS ONE, 2020, 15, e0226540.	1.1	10
10	Salicylic Acid Steers the Growth–Immunity Tradeoff. Trends in Plant Science, 2020, 25, 566-576.	4.3	139
11	Quantification of plant morphology and leaf thickness with optical coherence tomography. Applied Optics, 2020, 59, 10304.	0.9	13
12	Activity and Phylogenetics of the Broadly Occurring Family of Microbial Nep1-Like Proteins. Annual Review of Phytopathology, 2019, 57, 367-386.	3.5	70
13	Multiple downy mildew effectors target the stressâ€related <scp>NAC</scp> transcription factor Ls <scp>NAC</scp> 069 in lettuce. Plant Journal, 2019, 99, 1098-1115.	2.8	27
14	Recognition of lettuce downy mildew effector BLR38 in <i>Lactuca serriola</i> LS102 requires two unlinked loci. Molecular Plant Pathology, 2019, 20, 240-253.	2.0	13
15	Oomycetes Used in Arabidopsis Research. The Arabidopsis Book, 2019, 17, e0188.	0.5	30
16	<i>Arabidopsis</i> JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6388-6393.	3.3	165
17	Effectorâ€mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species. New Phytologist, 2017, 216, 915-926.	3.5	28
18	Seeing is believing: imaging the delivery of pathogen effectors during plant infection. New Phytologist, 2017, 216, 8-10.	3.5	5

#	Article	IF	CITATIONS
19	How plants differ in toxin-sensitivity. Science, 2017, 358, 1383-1384.	6.0	15
20	Extracellular Recognition of Oomycetes during Biotrophic Infection of Plants. Frontiers in Plant Science, 2016, 7, 906.	1.7	53
21	<scp>DOWNY MILDEW RESISTANT</scp> 6 and <scp>DMR</scp> 6â€ <scp>LIKE OXYGENASE</scp> 1 are partially redundant but distinct suppressors of immunity in Arabidopsis. Plant Journal, 2015, 81, 210-222.	2.8	168
22	An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nature Plants, 2015, 1, 15140.	4.7	373
23	Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. BMC Genomics, 2015, 16, 741.	1.2	135
24	The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 2015, 16, 413-434.	2.0	695
25	A Conserved Peptide Pattern from a Widespread Microbial Virulence Factor Triggers Pattern-Induced Immunity in Arabidopsis. PLoS Pathogens, 2014, 10, e1004491.	2.1	166
26	Fungal Endopolygalacturonases Are Recognized as Microbe-Associated Molecular Patterns by the Arabidopsis Receptor-Like Protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1 Â. Plant Physiology, 2014, 164, 352-364.	2.3	249
27	Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16955-16960.	3.3	189
28	Comparative and Functional Analysis of the Widely Occurring Family of Nep1-Like Proteins. Molecular Plant-Microbe Interactions, 2014, 27, 1081-1094.	1.4	105
29	Functional Analysis of Hyaloperonospora arabidopsidis RXLR Effectors. PLoS ONE, 2014, 9, e110624.	1.1	14
30	Specific In Planta Recognition of Two GKLR Proteins of the Downy Mildew <i>Bremia lactucae</i> Revealed in a Large Effector Screen in Lettuce. Molecular Plant-Microbe Interactions, 2013, 26, 1259-1270.	1.4	52
31	Susceptibility to plant disease: more than a failure of host immunity. Trends in Plant Science, 2013, 18, 546-554.	4.3	114
32	Distinctive Expansion of Potential Virulence Genes in the Genome of the Oomycete Fish Pathogen Saprolegnia parasitica. PLoS Genetics, 2013, 9, e1003272.	1.5	221
33	Powdery Mildew Resistance in Tomato by Impairment of SIPMR4 and SIDMR1. PLoS ONE, 2013, 8, e67467.	1.1	74
34	Nontoxic Nep1-Like Proteins of the Downy Mildew Pathogen <i>Hyaloperonospora arabidopsidis</i> : Repression of Necrosis-Inducing Activity by a Surface-Exposed Region. Molecular Plant-Microbe Interactions, 2012, 25, 697-708.	1.4	100
35	Reconstruction of Oomycete Genome Evolution Identifies Differences in Evolutionary Trajectories Leading to Present-Day Large Gene Families. Genome Biology and Evolution, 2012, 4, 199-211.	1.1	44
36	Broadâ€spectrum resistance of <scp>A</scp> rabidopsis <scp>C</scp> 24 to downy mildew is mediated by different combinations of isolateâ€specific loci. New Phytologist, 2012, 196, 1171-1181.	3.5	26

#	Article	IF	CITATIONS
37	Effector identification in the lettuce downy mildew <i>Bremia lactucae</i> by massively parallel transcriptome sequencing. Molecular Plant Pathology, 2012, 13, 719-731.	2.0	52
38	Genetical Genomics Reveals Large Scale Genotype-By-Environment Interactions in Arabidopsis thaliana. Frontiers in Genetics, 2012, 3, 317.	1.1	40
39	Bioinformatic Inference of Specific and General Transcription Factor Binding Sites in the Plant Pathogen Phytophthora infestans. PLoS ONE, 2012, 7, e51295.	1.1	13
40	Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network. Science, 2011, 333, 596-601.	6.0	776
41	Identification of Hyaloperonospora arabidopsidis Transcript Sequences Expressed during Infection Reveals Isolate-Specific Effectors. PLoS ONE, 2011, 6, e19328.	1.1	59
42	How do oomycete effectors interfere with plant life?. Current Opinion in Plant Biology, 2011, 14, 407-414.	3.5	119
43	A Domain-Centric Analysis of Oomycete Plant Pathogen Genomes Reveals Unique Protein Organization Â Â. Plant Physiology, 2011, 155, 628-644.	2.3	79
44	Multiple Candidate Effectors from the Oomycete Pathogen Hyaloperonospora arabidopsidis Suppress Host Plant Immunity. PLoS Pathogens, 2011, 7, e1002348.	2.1	212
45	Trans-Repression of Gene Activity Upstream of T-DNA Tagged RLK902 Links Arabidopsis Root Growth Inhibition and Downy Mildew Resistance. PLoS ONE, 2011, 6, e19028.	1.1	10
46	Signatures of Adaptation to Obligate Biotrophy in the <i>Hyaloperonospora arabidopsidis</i> Genome. Science, 2010, 330, 1549-1551.	6.0	492
47	Regulatory Network Identification by Genetical Genomics: Signaling Downstream of the Arabidopsis Receptor-Like Kinase ERECTA. Plant Physiology, 2010, 154, 1067-1078.	2.3	59
48	Downy Mildew Resistance in <i>Arabidopsis</i> by Mutation of <i>HOMOSERINE KINASE</i> Â. Plant Cell, 2009, 21, 2179-2189.	3.1	93
49	Disease-Specific Expression of Host Genes During Downy Mildew Infection of <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2009, 22, 1104-1115.	1.4	46
50	Arabidopsis <i>DMR6</i> encodes a putative 2OGâ€Fe(II) oxygenase that is defenseâ€associated but required for susceptibility to downy mildew. Plant Journal, 2008, 54, 785-793.	2.8	183
51	Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1708-1713.	3.3	329
52	Membrane-associated transcripts in Arabidopsis; their isolation and characterization by DNA microarray analysis and bioinformatics. Plant Journal, 2006, 46, 708-721.	2.8	33
53	Identification of Arabidopsis Loci Required for Susceptibility to the Downy Mildew Pathogen Hyaloperonospora parasitica. Molecular Plant-Microbe Interactions, 2005, 18, 583-592.	1.4	89
54	Quantification of disease progression of several microbial pathogens onArabidopsis thalianausing real-time fluorescence PCR. FEMS Microbiology Letters, 2003, 228, 241-248.	0.7	128

#	Article	IF	CITATIONS
55	The Arabidopsis mutant iop1 exhibits induced over-expression of the plant defensin gene PDF1.2 and enhanced pathogen resistance. Molecular Plant Pathology, 2003, 4, 479-486.	2.0	22
56	The Xanthomonas Type III Effector Protein AvrBs3 Modulates Plant Gene Expression and Induces Cell Hypertrophy in the Susceptible Host. Molecular Plant-Microbe Interactions, 2002, 15, 637-646.	1.4	184
57	Genetic Mapping and Functional Analysis of the Tomato Bs4 Locus Governing Recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 Protein. Molecular Plant-Microbe Interactions, 2001, 14, 629-638.	1.4	82
58	Type III secretion and in planta recognition of the Xanthomonas avirulence proteins AvrBs1 and AvrBs1. Molecular Plant Pathology, 2001, 2, 287-296.	2.0	52
59	Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant Journal, 2001, 26, 523-534.	2.8	158
60	How the bacterial plant pathogen Xanthomonas campestris pv. vesicatoria conquers the host. Molecular Plant Pathology, 2000, 1, 73-76.	2.0	15
61	HrpB2 and HrpF from Xanthomonas are type III-secreted proteins and essential for pathogenicity and recognition by the host plant. Molecular Microbiology, 2000, 38, 828-838.	1.2	134
62	Gene-for-gene interactions: bacterial avirulence proteins specify plant disease resistance. Current Opinion in Microbiology, 1999, 2, 94-98.	2.3	50
63	The In Planta-Produced Extracellular Proteins ECP1 and ECP2 of Cladosporium fulvum Are Virulence Factors. Molecular Plant-Microbe Interactions, 1997, 10, 725-734.	1.4	112
64	Bacterial avirulence proteins as triggers of plant disease resistance. Trends in Microbiology, 1997, 5, 394-398.	3.5	32
65	Recognition of bacterial avirulence proteins occurs inside the plant cell: a general phenomenon in resistance to bacterial diseases?. Plant Journal, 1997, 12, 1-7.	2.8	92
66	Recognition of the Bacterial Avirulence Protein AvrBs3 Occurs inside the Host Plant Cell. Cell, 1996, 87, 1307-1316.	13.5	340
67	HrpC, a Key <i>hrp</i> Regulatory Protein of <i>Xanthomonas campestris</i> pv. <i>vesicatoria</i> Is Homologous to Two-Component Response Regulators. Molecular Plant-Microbe Interactions, 1996, 9, 704.	1.4	252
68	Nitrogen limitation induces expression of the avirulence gene avr9 in the tomato pathogen Cladosporium fulvum. Molecular Genetics and Genomics, 1994, 243, 277-285.	2.4	140
69	The in-planta induced ecp2 gene of the tomato pathogen Cladosporium fulvum is not essential for pathogenicity. Current Genetics, 1994, 26, 245-250.	0.8	26
70	Molecular characerization of the interaction between the fungal pathogen Cladosporium fulvum and tomato. Euphytica, 1994, 79, 219-225.	0.6	10
71	Molecular communication between host plant and the fungal tomato pathogenCladosporium fulvum. Antonie Van Leeuwenhoek, 1994, 65, 257-262.	0.7	10
72	The AVR9 Race-Specific Elicitor of Cladosporium fulvum Is Processed by Endogenous and Plant Proteases. Plant Physiology, 1993, 103, 91-96.	2.3	125

#	Article	IF	CITATIONS
73	Characterization of Two Putative Pathogenicity Genes of the Fungal Tomato PathogenCladosporium fulvum. Molecular Plant-Microbe Interactions, 1993, 6, 210.	1.4	84
74	Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis Plant Journal, 1992, 2, 359-366.	2.8	233
75	Cloning and Characterization of cDNA of Avirulence Gene <i>avr9</i> of the Fungal Pathogen <i>Cladosporium fulvum</i> , Causal Agent of Tomato Leaf Mold. Molecular Plant-Microbe Interactions, 1991, 4, 52.	1.4	305

Fungal and Oomycete Biotrophy. , 0, , 77-101.