List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2482284/publications.pdf Version: 2024-02-01

		5558	11899
231	20,925	82	134
papers	citations	h-index	g-index
234	234	234	6182
all docs	docs citations	times ranked	citing authors

NINA KDALIS

#	Article	IF	CITATIONS
1	Music training for the development of auditory skills. Nature Reviews Neuroscience, 2010, 11, 599-605.	4.9	801
2	Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 2007, 10, 420-422.	7.1	771
3	Auditory Brain Stem Response to Complex Sounds: A Tutorial. Ear and Hearing, 2010, 31, 302-324.	1.0	621
4	Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15894-15898.	3.3	502
5	Musician Enhancement for Speech-In-Noise. Ear and Hearing, 2009, 30, 653-661.	1.0	420
6	The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology, 2010, 47, 236-246.	1.2	382
7	Central Auditory Plasticity: Changes in the N1-P2 Complex after Speech-Sound Training. Ear and Hearing, 2001, 22, 79-90.	1.0	348
8	Musical Experience Limits the Degradative Effects of Background Noise on the Neural Processing of Sound. Journal of Neuroscience, 2009, 29, 14100-14107.	1.7	331
9	Aging Affects Neural Precision of Speech Encoding. Journal of Neuroscience, 2012, 32, 14156-14164.	1.7	327
10	Brainstem responses to speech syllables. Clinical Neurophysiology, 2004, 115, 2021-2030.	0.7	304
11	Speaking Clearly for Children With Learning Disabilities. Journal of Speech, Language, and Hearing Research, 2003, 46, 80-97.	0.7	291
12	Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1997, 104, 540-545.	2.0	289
13	Musical experience shapes top-down auditory mechanisms: Evidence from masking and auditory attention performance. Hearing Research, 2010, 261, 22-29.	0.9	268
14	Plasticity in the Adult Human Auditory Brainstem following Short-term Linguistic Training. Journal of Cognitive Neuroscience, 2008, 20, 1892-1902.	1.1	264
15	Central Auditory System Plasticity Associated with Speech Discrimination Training. Journal of Cognitive Neuroscience, 1995, 7, 25-32.	1.1	262
16	Central auditory system plasticity: Generalization to novel stimuli following listening training. Journal of the Acoustical Society of America, 1997, 102, 3762-3773.	0.5	259
17	Unstable Representation of Sound: A Biological Marker of Dyslexia. Journal of Neuroscience, 2013, 33, 3500-3504.	1.7	258
18	Auditory training improves neural timing in the human brainstem. Behavioural Brain Research, 2005, 156, 95-103.	1.2	255

#	Article	IF	CITATIONS
19	Neurobiologic responses to speech in noise in children with learning problems: deficits and strategies for improvement. Clinical Neurophysiology, 2001, 112, 758-767.	0.7	251
20	Right-Hemisphere Auditory Cortex Is Dominant for Coding Syllable Patterns in Speech. Journal of Neuroscience, 2008, 28, 3958-3965.	1.7	234
21	Context-Dependent Encoding in the Human Auditory Brainstem Relates to Hearing Speech in Noise: Implications for Developmental Dyslexia. Neuron, 2009, 64, 311-319.	3.8	228
22	Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7877-7881.	3.3	225
23	Reading and Subcortical Auditory Function. Cerebral Cortex, 2009, 19, 2699-2707.	1.6	224
24	Musical Experience and the Aging Auditory System: Implications for Cognitive Abilities and Hearing Speech in Noise. PLoS ONE, 2011, 6, e18082.	1.1	223
25	Brain Stem Response to Speech: A Biological Marker of Auditory Processing. Ear and Hearing, 2005, 26, 424-434.	1.0	206
26	Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13022-13027.	3.3	200
27	Reversal of age-related neural timing delays with training. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4357-4362.	3.3	199
28	Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians. Hearing Research, 2008, 241, 34-42.	0.9	197
29	Neural plasticity following auditory training in children with learning problems. Clinical Neurophysiology, 2003, 114, 673-684.	0.7	195
30	A dynamic auditory-cognitive system supports speech-in-noise perception in older adults. Hearing Research, 2013, 300, 18-32.	0.9	193
31	Deficits in auditory brainstem pathway encoding of speech sounds in children with learning problems. Neuroscience Letters, 2002, 319, 111-115.	1.0	187
32	Brainstem origins for cortical â€~what' and â€~where' pathways in the auditory system. Trends in Neurosciences, 2005, 28, 176-181.	4.2	180
33	A Neural Basis of Speech-in-Noise Perception in Older Adults. Ear and Hearing, 2011, 32, 750-757.	1.0	175
34	Neurophysiologic Bases of Speech Discrimination. Ear and Hearing, 1995, 16, 19-37.	1.0	172
35	Training to Improve Hearing Speech in Noise: Biological Mechanisms. Cerebral Cortex, 2012, 22, 1180-1190.	1.6	172
36	Neural Timing Is Linked to Speech Perception in Noise. Journal of Neuroscience, 2010, 30, 4922-4926.	1.7	171

#	Article	IF	CITATIONS
37	Beat synchronization predicts neural speech encoding and reading readiness in preschoolers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14559-14564.	3.3	169
38	Perception of Speech in Noise: Neural Correlates. Journal of Cognitive Neuroscience, 2011, 23, 2268-2279.	1.1	166
39	Musical training during early childhood enhances the neural encoding of speech in noise. Brain and Language, 2012, 123, 191-201.	0.8	166
40	Atypical brainstem representation of onset and formant structure of speech sounds in children with language-based learning problems. Biological Psychology, 2004, 67, 299-317.	1.1	164
41	Brainstem Timing: Implications for Cortical Processing and Literacy. Journal of Neuroscience, 2005, 25, 9850-9857.	1.7	164
42	Musical experience and neural efficiency – effects of training on subcortical processing of vocal expressions of emotion. European Journal of Neuroscience, 2009, 29, 661-668.	1.2	159
43	Music Enrichment Programs Improve the Neural Encoding of Speech in At-Risk Children. Journal of Neuroscience, 2014, 34, 11913-11918.	1.7	159
44	Stability and Plasticity of Auditory Brainstem Function Across the Lifespan. Cerebral Cortex, 2015, 25, 1415-1426.	1.6	155
45	Older Adults Benefit from Music Training Early in Life: Biological Evidence for Long-Term Training-Driven Plasticity. Journal of Neuroscience, 2013, 33, 17667-17674.	1.7	151
46	Learning to Encode Timing: Mechanisms of Plasticity in the Auditory Brainstem. Neuron, 2009, 62, 463-469.	3.8	150
47	Can You Hear Me Now? Musical Training Shapes Functional Brain Networks for Selective Auditory Attention and Hearing Speech in Noise. Frontiers in Psychology, 2011, 2, 113.	1.1	146
48	Aging Affects Hemispheric Asymmetry in the Neural Representation of Speech Sounds. Journal of Neuroscience, 2000, 20, 791-797.	1.7	145
49	Biological impact of auditory expertise across the life span: Musicians as a model of auditory learning. Hearing Research, 2014, 308, 109-121.	0.9	144
50	Correlation between brainstem and cortical auditory processes in normal and language-impaired children. Brain, 2004, 128, 417-423.	3.7	139
51	Developmental Plasticity in the Human Auditory Brainstem. Journal of Neuroscience, 2008, 28, 4000-4007.	1.7	135
52	Abnormal Cortical Processing of the Syllable Rate of Speech in Poor Readers. Journal of Neuroscience, 2009, 29, 7686-7693.	1.7	135
53	Brainstem transcription of speech is disrupted in children with autism spectrum disorders. Developmental Science, 2009, 12, 557-567.	1.3	134
54	A Little Goes a Long Way: How the Adult Brain Is Shaped by Musical Training in Childhood. Journal of Neuroscience, 2012, 32, 11507-11510.	1.7	134

#	Article	IF	CITATIONS
55	Selective Subcortical Enhancement of Musical Intervals in Musicians. Journal of Neuroscience, 2009, 29, 5832-5840.	1.7	132
56	Discrimination of speechâ€like contrasts in the auditory thalamus and cortex. Journal of the Acoustical Society of America, 1994, 96, 2758-2768.	0.5	129
57	Musical experience offsets age-related delays in neural timing. Neurobiology of Aging, 2012, 33, 1483.e1-1483.e4.	1.5	127
58	Experienceâ€induced Malleability in Neural Encoding of <i>Pitch</i> , <i>Timbre</i> , and <i>Timing</i> . Annals of the New York Academy of Sciences, 2009, 1169, 543-557.	1.8	124
59	Unraveling the Biology of Auditory Learning: A Cognitive–Sensorimotor–Reward Framework. Trends in Cognitive Sciences, 2015, 19, 642-654.	4.0	123
60	The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills. Brain and Language, 2013, 124, 225-231.	0.8	122
61	Music training improves speech-in-noise perception: Longitudinal evidence from a community-based music program. Behavioural Brain Research, 2015, 291, 244-252.	1.2	122
62	Music training alters the course of adolescent auditory development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10062-10067.	3.3	121
63	Evolving perspectives on the sources of the frequency-following response. Nature Communications, 2019, 10, 5036.	5.8	116
64	The Ability to Move to a Beat Is Linked to the Consistency of Neural Responses to Sound. Journal of Neuroscience, 2013, 33, 14981-14988.	1.7	115
65	Effects of hearing loss on the subcortical representation of speech cues. Journal of the Acoustical Society of America, 2013, 133, 3030-3038.	0.5	110
66	Assistive listening devices drive neuroplasticity in children with dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16731-16736.	3.3	106
67	Cognitive factors shape brain networks for auditory skills: spotlight on auditory working memory. Annals of the New York Academy of Sciences, 2012, 1252, 100-107.	1.8	105
68	Test–retest reliability of the speech-evoked auditory brainstem response. Clinical Neurophysiology, 2011, 122, 346-355.	0.7	103
69	Response plasticity of single neurons in rabbit auditory association cortex during tone-signalled learning. Brain Research, 1982, 246, 205-215.	1.1	101
70	Effects of Background Noise on Cortical Encoding of Speech in Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2009, 39, 1185-1196.	1.7	100
71	Subcortical processing of speech regularities underlies reading and music aptitude in children. Behavioral and Brain Functions, 2011, 7, 44.	1.4	100
72	Human inferior colliculus activity relates to individual differences in spoken language learning. Journal of Neurophysiology, 2012, 107, 1325-1336.	0.9	98

#	Article	lF	CITATIONS
73	Effects of lengthened formant transition duration on discrimination and neural representation of synthetic CV syllables by normal and learning-disabled children. Journal of the Acoustical Society of America, 1999, 106, 2086-2096.	0.5	97
74	Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance. Journal of Speech, Language, and Hearing Research, 2013, 56, 31-43.	0.7	97
75	Auditory Processing in Noise: A Preschool Biomarker for Literacy. PLoS Biology, 2015, 13, e1002196.	2.6	97
76	Music Training for the Development of Reading Skills. Progress in Brain Research, 2013, 207, 209-241.	0.9	96
77	Sensory-based learning disability: Insights from brainstem processing of speech sounds. International Journal of Audiology, 2007, 46, 524-532.	0.9	91
78	Brainstem correlates of speech-in-noise perception in children. Hearing Research, 2010, 270, 151-157.	0.9	91
79	Playing Music for a Smarter Ear: Cognitive, Perceptual and Neurobiological Evidence. Music Perception, 2011, 29, 133-146.	0.5	90
80	Auditory-motor entrainment and phonological skills: precise auditory timing hypothesis (PATH). Frontiers in Human Neuroscience, 2014, 8, 949.	1.0	90
81	Analyzing the FFR: A tutorial for decoding the richness of auditory function. Hearing Research, 2019, 382, 107779.	0.9	90
82	Bilingualism increases neural response consistency and attentional control: Evidence for sensory and cognitive coupling. Brain and Language, 2014, 128, 34-40.	0.8	89
83	Sex differences in auditory subcortical function. Clinical Neurophysiology, 2012, 123, 590-597.	0.7	87
84	Learning impaired children exhibit timing deficits and training-related improvements in auditory cortical responses to speech in noise. Experimental Brain Research, 2004, 157, 431-41.	0.7	86
85	Seeing speech affects acoustic information processing in the human brainstem. Experimental Brain Research, 2006, 168, 1-10.	0.7	85
86	The Impoverished Brain: Disparities in Maternal Education Affect the Neural Response to Sound. Journal of Neuroscience, 2013, 33, 17221-17231.	1.7	85
87	Musicians' Enhanced Neural Differentiation of Speech Sounds Arises Early in Life: Developmental Evidence from Ages 3 to 30. Cerebral Cortex, 2014, 24, 2512-2521.	1.6	85
88	Auditory Brainstem Timing Predicts Cerebral Asymmetry for Speech. Journal of Neuroscience, 2006, 26, 11131-11137.	1.7	84
89	Subcortical Laterality of Speech Encoding. Audiology and Neuro-Otology, 2009, 14, 198-207.	0.6	84
90	Sensory-Cognitive Interaction in the Neural Encoding of Speech in Noise: A Review. Journal of the American Academy of Audiology, 2010, 21, 575-585.	0.4	82

#	Article	IF	CITATIONS
91	The role of rhythm in perceiving speech in noise: a comparison of percussionists, vocalists and non-musicians. Cognitive Processing, 2016, 17, 79-87.	0.7	76
92	What subcortical–cortical relationships tell us about processing speech in noise. European Journal of Neuroscience, 2011, 33, 549-557.	1.2	75
93	Training changes processing of speech cues in older adults with hearing loss. Frontiers in Systems Neuroscience, 2013, 7, 97.	1.2	75
94	Art and science: how musical training shapes the brain. Frontiers in Psychology, 2013, 4, 713.	1.1	75
95	Brainstem encoding of voiced consonant–vowel stop syllables. Clinical Neurophysiology, 2008, 119, 2623-2635.	0.7	74
96	Specialization among the specialized: Auditory brainstem function is tuned in to timbre. Cortex, 2012, 48, 360-362.	1.1	74
97	Auditory Brainstem Correlates of Perceptual Timing Deficits. Journal of Cognitive Neuroscience, 2007, 19, 376-385.	1.1	72
98	Test-retest consistency of speech-evoked auditory brainstem responses in typically-developing children. Hearing Research, 2012, 284, 52-58.	0.9	70
99	Biological changes in auditory function following training in children with autism spectrum disorders. Behavioral and Brain Functions, 2010, 6, 60.	1.4	67
100	Neural Entrainment to the Rhythmic Structure of Music. Journal of Cognitive Neuroscience, 2015, 27, 400-408.	1.1	67
101	Hearing It Again and Again: On-Line Subcortical Plasticity in Humans. PLoS ONE, 2010, 5, e13645.	1.1	65
102	Musical training heightens auditory brainstem function during sensitive periods in development. Frontiers in Psychology, 2013, 4, 622.	1.1	64
103	Auditory brainstem measures predict reading and speech-in-noise perception in school-aged children. Behavioural Brain Research, 2011, 216, 597-605.	1.2	62
104	Auditory biological marker of concussion in children. Scientific Reports, 2016, 6, 39009.	1.6	61
105	Longitudinal Effects of Group Music Instruction on Literacy Skills in Low-Income Children. PLoS ONE, 2014, 9, e113383.	1.1	60
106	Biological impact of preschool music classes on processing speech in noise. Developmental Cognitive Neuroscience, 2013, 6, 51-60.	1.9	59
107	Children with autism spectrum disorder have unstable neural responses to sound. Experimental Brain Research, 2018, 236, 733-743.	0.7	59
108	An Integrative Model of Subcortical Auditory Plasticity. Brain Topography, 2014, 27, 539-552.	0.8	58

#	Article	IF	CITATIONS
109	Musical experience strengthens the neural representation of sounds important for communication in middle-aged adults. Frontiers in Aging Neuroscience, 2012, 4, 30.	1.7	56
110	Effects of noise and cue enhancement on neural responses to speech in auditory midbrain, thalamus and cortex. Hearing Research, 2002, 169, 97-111.	0.9	54
111	Subcortical representation of speech fine structure relates to reading ability. NeuroReport, 2012, 23, 6-9.	0.6	54
112	Auditory Training: Evidence for Neural Plasticity in Older Adults. Perspectives on Hearing and Hearing Disorders Research and Research Diagnostics, 2013, 17, 37.	0.4	54
113	High school music classes enhance the neural processing of speech. Frontiers in Psychology, 2013, 4, 855.	1.1	54
114	Development of subcortical speech representation in human infants. Journal of the Acoustical Society of America, 2015, 137, 3346-3355.	0.5	54
115	Music training relates to the development of neural mechanisms of selective auditory attention. Developmental Cognitive Neuroscience, 2015, 12, 94-104.	1.9	54
116	Objective Neural Indices of Speech-in-Noise Perception. Trends in Amplification, 2010, 14, 73-83.	2.4	52
117	Cross-phaseogram: Objective neural index of speech sound differentiation. Journal of Neuroscience Methods, 2011, 196, 308-317.	1.3	50
118	Engagement in community music classes sparks neuroplasticity and language development in children from disadvantaged backgrounds. Frontiers in Psychology, 2014, 5, 1403.	1.1	50
119	Neurobiology of Everyday Communication: What Have We Learned From Music?. Neuroscientist, 2017, 23, 287-298.	2.6	49
120	How bilinguals listen in noise: linguistic and non-linguistic factors. Bilingualism, 2017, 20, 834-843.	1.0	49
121	Acoustic elements of speechlike stimuli are reflected in surface recorded responses over the guinea pig temporal lobe. Journal of the Acoustical Society of America, 1996, 99, 3606-3614.	0.5	47
122	Bilingual enhancements have no socioeconomic boundaries. Developmental Science, 2016, 19, 881-891.	1.3	47
123	Brainstem Timing Deficits in Children with Learning Impairment May Result from Corticofugal Origins. Audiology and Neuro-Otology, 2008, 13, 335-344.	0.6	46
124	Beat Synchronization across the Lifespan: Intersection of Development and Musical Experience. PLoS ONE, 2015, 10, e0128839.	1.1	44
125	Partial maintenance of auditory-based cognitive training benefits in older adults. Neuropsychologia, 2014, 62, 286-296.	0.7	43
126	At-Risk Elementary School Children with One Year of Classroom Music Instruction Are Better at Keeping a Beat. PLoS ONE, 2013, 8, e77250.	1.1	42

#	Article	IF	CITATIONS
127	Human brainstem plasticity: The interaction of stimulus probability and auditory learning. Neurobiology of Learning and Memory, 2014, 109, 82-93.	1.0	42
128	Individual Differences in Human Auditory Processing: Insights From Single-Trial Auditory Midbrain Activity in an Animal Model. Cerebral Cortex, 2017, 27, 5095-5115.	1.6	42
129	Corticalâ€evoked potentials reflect speechâ€inâ€noise perception in children. European Journal of Neuroscience, 2010, 32, 1407-1413.	1.2	40
130	Musical Experience Promotes Subcortical Efficiency in Processing Emotional Vocal Sounds. Annals of the New York Academy of Sciences, 2009, 1169, 209-213.	1.8	39
131	Music, Noise-Exclusion, and Learning. Music Perception, 2010, 27, 297-306.	0.5	38
132	Dyslexia risk gene relates to representation of sound in the auditory brainstem. Developmental Cognitive Neuroscience, 2017, 24, 63-71.	1.9	37
133	Individual Differences in Rhythm Skills: Links with Neural Consistency and Linguistic Ability. Journal of Cognitive Neuroscience, 2017, 29, 855-868.	1.1	37
134	Variations on the theme of musical expertise: cognitive and sensory processing in percussionists, vocalists and nonâ€musicians. European Journal of Neuroscience, 2017, 45, 952-963.	1.2	37
135	Stimulus Rate and Subcortical Auditory Processing of Speech. Audiology and Neuro-Otology, 2010, 15, 332-342.	0.6	36
136	The Frequency-Following Response: A Window into Human Communication. Springer Handbook of Auditory Research, 2017, , 1-15.	0.3	36
137	Thalamic asymmetry is related to acoustic signal complexity. Neuroscience Letters, 1999, 267, 89-92.	1.0	35
138	Neural processing of speech in children is influenced by extent of bilingual experience. Neuroscience Letters, 2015, 585, 48-53.	1.0	35
139	Individual differences in speech-in-noise perception parallel neural speech processing and attention in preschoolers. Hearing Research, 2017, 344, 148-157.	0.9	35
140	Neural representation of consciously imperceptible speech sound differences. Perception & Psychophysics, 2000, 62, 1383-1393.	2.3	34
141	The Potential Role of the cABR in Assessment and Management of Hearing Impairment. International Journal of Otolaryngology, 2013, 2013, 1-10.	1.0	34
142	Neural responses to sounds presented on and off the beat of ecologically valid music. Frontiers in Systems Neuroscience, 2013, 7, 14.	1.2	34
143	Evidence for Multiple Rhythmic Skills. PLoS ONE, 2015, 10, e0136645.	1.1	34
144	Audiovisual Deficits in Older Adults with Hearing Loss: Biological Evidence. Ear and Hearing, 2009, 30, 505-514.	1.0	33

#	Article	IF	CITATIONS
145	Inferior colliculus contributions to phase encoding of stop consonants in an animal model. Hearing Research, 2011, 282, 108-118.	0.9	32
146	Musical Training Enhances Neural Processing of Binaural Sounds. Journal of Neuroscience, 2013, 33, 16741-16747.	1.7	32
147	Continued maturation of auditory brainstem function during adolescence: A longitudinal approach. Clinical Neurophysiology, 2015, 126, 2348-2355.	0.7	32
148	Case studies in neuroscience: subcortical origins of the frequency-following response. Journal of Neurophysiology, 2019, 122, 844-848.	0.9	32
149	Musicians change their tune: How hearing loss alters the neural code. Hearing Research, 2013, 302, 121-131.	0.9	30
150	Emergence of biological markers of musicianship with schoolâ€based music instruction. Annals of the New York Academy of Sciences, 2015, 1337, 163-169.	1.8	30
151	The neural legacy of a single concussion. Neuroscience Letters, 2017, 646, 21-23.	1.0	30
152	Aggregate neural responses to speech sounds in the central auditory system. Speech Communication, 2003, 41, 35-47.	1.6	29
153	Auditory-neurophysiological responses to speech during early childhood: Effects of background noise. Hearing Research, 2015, 328, 34-47.	0.9	29
154	Music training enhances the automatic neural processing of foreign speech sounds. Scientific Reports, 2017, 7, 12631.	1.6	28
155	Auditory learning through active engagement with sound: biological impact of community music lessons in at-risk children. Frontiers in Neuroscience, 2014, 8, 351.	1.4	27
156	Got Rhythm? Better Inhibitory Control Is Linked with More Consistent Drumming and Enhanced Neural Tracking of the Musical Beat in Adult Percussionists and Nonpercussionists. Journal of Cognitive Neuroscience, 2018, 30, 14-24.	1.1	27
157	Sex differences in subcortical auditory processing emerge across development. Hearing Research, 2019, 380, 166-174.	0.9	27
158	Developmental changes in resting gamma power from age three to adulthood. Clinical Neurophysiology, 2013, 124, 1040-1042.	0.7	25
159	Physiologic discrimination of stop consonants relates to phonological skills in pre-readers: a biomarker for subsequent reading ability?â€. Frontiers in Human Neuroscience, 2013, 7, 899.	1.0	25
160	Continued Maturation of the Click-Evoked Auditory Brainstem Response in Preschoolers. Journal of the American Academy of Audiology, 2015, 26, 030-035.	0.4	25
161	Difficulty hearing in noise: a sequela of concussion in children. Brain Injury, 2018, 32, 763-769.	0.6	25
162	Prior Experience Biases Subcortical Sensitivity to Sound Patterns. Journal of Cognitive Neuroscience, 2015, 27, 124-140.	1.1	24

NINA KRAUS

#	Article	IF	CITATIONS
163	Beyond Words: How Humans Communicate Through Sound. Annual Review of Psychology, 2016, 67, 83-103.	9.9	24
164	Music and language. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 129, 207-222.	1.0	23
165	Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia. European Journal of Neuroscience, 2015, 42, 1644-1650.	1.2	23
166	Intertrial auditory neural stability supports beat synchronization in preschoolers. Developmental Cognitive Neuroscience, 2016, 17, 76-82.	1.9	23
167	Hemispheric Asymmetry of Endogenous Neural Oscillations in Young Children: Implications for Hearing Speech In Noise. Scientific Reports, 2016, 6, 19737.	1.6	22
168	Emotion Modulates Early Auditory Response to Speech. Journal of Cognitive Neuroscience, 2009, 21, 2121-2128.	1.1	21
169	Positive impacts of early auditory training on cortical processing at an older age. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6364-6369.	3.3	21
170	Atypical brain oscillations: a biological basis for dyslexia?. Trends in Cognitive Sciences, 2012, 16, 12-13.	4.0	20
171	Clapping in time parallels literacy and calls upon overlapping neural mechanisms in early readers. Annals of the New York Academy of Sciences, 2018, 1423, 338-348.	1.8	19
172	Native language shapes automatic neural processing of speech. Neuropsychologia, 2016, 89, 57-65.	0.7	18
173	Incorporation of feedback during beat synchronization is an index of neural maturation and reading skills. Brain and Language, 2017, 164, 43-52.	0.8	18
174	How Rhythmic Skills Relate and Develop in School-Age Children. Global Pediatric Health, 2019, 6, 2333794X1985204.	0.3	18
175	Music Training and Vocal Production of Speech and Song. Music Perception, 2008, 25, 419-428.	0.5	17
176	Neural Encoding of Speech and Music: Implications for Hearing Speech in Noise. Seminars in Hearing, 2011, 32, 129-141.	0.5	17
177	Biological impact of music and software-based auditory training. Journal of Communication Disorders, 2012, 45, 403-410.	0.8	17
178	Getting back on the beat: links between auditory–motor integration and precise auditory processing at fast time scales. European Journal of Neuroscience, 2016, 43, 782-791.	1.2	17
179	The Cognitive Auditory System: The Role of Learning in Shaping the Biology of the Auditory System. Springer Handbook of Auditory Research, 2014, , 299-319.	0.3	17
180	A possible role for a paralemniscal auditory pathway in the coding of slow temporal information. Hearing Research, 2011, 272, 125-134.	0.9	15

#	Article	IF	CITATIONS
181	Speechâ€evoked auditory brainstem responses reflect familial and cognitive influences. Developmental Science, 2013, 16, 101-110.	1.3	13
182	Cortical response variability as a developmental index of selective auditory attention. Developmental Science, 2014, 17, 175-186.	1.3	13
183	Longitudinal maturation of auditory cortical function during adolescence. Frontiers in Human Neuroscience, 2015, 9, 530.	1.0	13
184	Auditory neurophysiology reveals central nervous system dysfunction in HIV-infected individuals. Clinical Neurophysiology, 2020, 131, 1827-1832.	0.7	13
185	Auditory Processing Differences in Toddlers With Autism Spectrum Disorder. Journal of Speech, Language, and Hearing Research, 2020, 63, 1608-1617.	0.7	13
186	Sex differences in auditory processing vary across estrous cycle. Scientific Reports, 2021, 11, 22898.	1.6	13
187	Population responses in primary auditory cortex simultaneously represent the temporal envelope and periodicity features in natural speech. Hearing Research, 2017, 348, 31-43.	0.9	12
188	Neurophysiological, linguistic, and cognitive predictors of children's ability to perceive speech in noise. Developmental Cognitive Neuroscience, 2019, 39, 100672.	1.9	12
189	Speech Sound Perception and Learning: Biologic Bases. Scandinavian Audiology, 1998, 27, 7-17.	0.5	11
190	Rapid acoustic processing in the auditory brainstem is not related to cortical asymmetry for the syllable rate of speech. Clinical Neurophysiology, 2010, 121, 1343-1350.	0.7	11
191	Resting gamma power is linked to reading ability in adolescents. Developmental Science, 2014, 17, 86-93.	1.3	11
192	Listening in on the listening brain. Physics Today, 2011, 64, 40-45.	0.3	10
193	Play Sports for a Quieter Brain: Evidence From Division I Collegiate Athletes. Sports Health, 2020, 12, 154-158.	1.3	10
194	Distinct rhythmic abilities align with phonological awareness and rapid naming in school-age children. Cognitive Processing, 2020, 21, 575-581.	0.7	9
195	Part VIII Introduction. Annals of the New York Academy of Sciences, 2009, 1169, 516-517.	1.8	8
196	Reply to Test–retest reliability of the speech-evoked ABR is supported by tests of covariance. Clinical Neurophysiology, 2011, 122, 1893-1895.	0.7	8
197	Harmonic relationships influence auditory brainstem encoding of chords. NeuroReport, 2011, 22, 504-508.	0.6	8
198	The power of sound for brain health. Nature Human Behaviour, 2017, 1, 700-702.	6.2	8

#	Article	IF	CITATIONS
199	Neural stability: A reflection of automaticity in reading. Neuropsychologia, 2017, 103, 162-167.	0.7	8
200	Speech-in-noise perception is linked to rhythm production skills in adult percussionists and non-musicians. Language, Cognition and Neuroscience, 2018, 33, 710-717.	0.7	8
201	Sex differences in subcortical auditory processing only partially explain higher prevalence of language disorders in males. Hearing Research, 2020, 398, 108075.	0.9	8
202	Central Auditory Tests to Track Cognitive Function in People With HIV: Longitudinal Cohort Study. JMIR Formative Research, 2021, 5, e26406.	0.7	8
203	Hearing Matters. Hearing Journal, 2013, 66, 52.	0.1	7
204	Rhythm, reading, and sound processing in the brain in preschool children. Npj Science of Learning, 2021, 6, 20.	1.5	7
205	Emotion and the auditory brainstem response to speech. Neuroscience Letters, 2010, 469, 319-323.	1.0	6
206	Objective Biological Measures for the Assessment and Management of Auditory Processing Disorder. Current Pediatric Reviews, 2011, 7, 252-261.	0.4	6
207	Auditory Reserve and the Legacy of Auditory Experience. Brain Sciences, 2014, 4, 575-593.	1.1	6
208	Case studies in neuroscience: cortical contributions to the frequency-following response depend on subcortical synchrony. Journal of Neurophysiology, 2021, 125, 273-281.	0.9	6
209	Nonverbal cognitive assessment of children in Tanzania with and without HIV. Child Neuropsychology, 2022, 28, 107-119.	0.8	6
210	Reliability of the auditory brainstem responses to speech over one year in school-age children: A reply to Drs. McFarland and Cacace. Hearing Research, 2012, 287, 3-5.	0.9	5
211	Auditory Processing Disorder: Biological Basis and Treatment Efficacy. Springer Handbook of Auditory Research, 2016, , 51-80.	0.3	5
212	Stable auditory processing underlies phonological awareness in typically developing preschoolers. Brain and Language, 2019, 197, 104664.	0.8	5
213	Auditory Cortical Changes Precede Brainstem Changes During Rapid Implicit Learning: Evidence From Human EEG. Frontiers in Neuroscience, 2021, 15, 718230.	1.4	5
214	Chapter 66 Speech-sound encoding: physiological manifestations and behavioral ramifications. Supplements To Clinical Neurophysiology, 2004, 57, 628-634.	2.1	4
215	Baseline profiles of auditory, vestibular, and visual functions in youth tackle football players. Concussion, 2019, 4, CNC66.	1.2	4
216	Performance on auditory, vestibular, and visual tests is stable across two seasons of youth tackle football. Brain Injury, 2020, 34, 236-244.	0.6	4

#	Article	IF	CITATIONS
217	Long-term Follow-up of a Patient With Auditory Neuropathy and Normal Hearing Thresholds. JAMA Otolaryngology - Head and Neck Surgery, 2020, 146, 499.	1.2	4
218	Memory for sound: The BEAMS Hypothesis [Perspective]. Hearing Research, 2021, 407, 108291.	0.9	4
219	Musical training gives edge in auditory processing. Hearing Journal, 2011, 64, 10.	0.1	3
220	The Janus Face of Auditory Learning: How Life in Sound Shapes Everyday Communication. Springer Handbook of Auditory Research, 2017, , 121-158.	0.3	3
221	Multiple Cases of Auditory Neuropathy Illuminate the Importance of Subcortical Neural Synchrony for Speech-in-noise Recognition and the Frequency-following Response. Ear and Hearing, 2022, 43, 605-619.	1.0	3
222	Listening in the Moment: How Bilingualism Interacts With Task Demands to Shape Active Listening. Frontiers in Neuroscience, 2021, 15, 717572.	1.4	3
223	Auditory brainstem's sensitivity to human voices. International Journal of Psychophysiology, 2015, 95, 333-337.	0.5	2
224	Clapping in Time With Feedback Relates Pervasively With Other Rhythmic Skills of Adolescents and Young Adults. Perceptual and Motor Skills, 2021, 128, 952-968.	0.6	2
225	Auditory neurophysiological development in early childhood: A growth curve modeling approach. Clinical Neurophysiology, 2021, 132, 2110-2122.	0.7	2
226	Non-stimulus-evoked activity as a measure of neural noise in the frequency-following response. Journal of Neuroscience Methods, 2021, 362, 109290.	1.3	2
227	Multi-Voiced Music Bypasses Attentional Limitations in the Brain. Frontiers in Neuroscience, 2021, 15, 588914.	1.4	1
228	Peripheral Auditory Function in Young HIV-Positive Adults With Clinically Normal Hearing. Otolaryngology - Head and Neck Surgery, 2021, , 019459982110471.	1.1	1
229	Neural Processing of Speech Sounds in ASD and First-Degree Relatives. Journal of Autism and Developmental Disorders, 0, , .	1.7	1
230	Building a Conceptual Framework for Auditory Learning. Hearing Journal, 2015, 68, 6.	0.1	0
231	Descending Control in the Auditory System: A Perspective. Frontiers in Neuroscience, 2021, 15, 769192.	1.4	0