
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2482241/publications.pdf Version: 2024-02-01

SONIA MODENO

#	Article	IF	CITATIONS
1	Cu–Mn and Co–Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Applied Catalysis B: Environmental, 2011, 104, 144-150.	10.8	219
2	High stability of Ce-promoted Ni/Mg–Al catalysts derived from hydrotalcites in dry reforming of methane. Fuel, 2010, 89, 592-603.	3.4	214
3	Cooperative effect of the Co–Mn mixed oxides for the catalytic oxidation of VOCs: Influence of the synthesis method. Applied Catalysis A: General, 2015, 492, 48-59.	2.2	130
4	CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides. Catalysis Today, 2008, 133-135, 357-366.	2.2	125
5	Catalytic wet peroxide oxidation of phenol by pillared clays containing Al–Ce–Fe. Water Research, 2005, 39, 3891-3899.	5.3	124
6	Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays. Applied Clay Science, 2003, 22, 303-308.	2.6	117
7	Dry reforming of methane using Ni–Ce catalysts supported on a modified mineral clay. Applied Catalysis A: General, 2009, 364, 65-74.	2.2	100
8	Co-precipitated Ni–Mg–Al catalysts containing Ce for CO2 reforming of methane. International Journal of Hydrogen Energy, 2011, 36, 3886-3894.	3.8	93
9	Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: Characterization and catalytic activity. Catalysis Today, 2005, 107-108, 126-132.	2.2	91
10	Effect of Fe and Ce on Al-pillared bentonite and their performance in catalytic oxidation reactions. Applied Catalysis A: General, 2007, 317, 120-128.	2.2	91
11	Syngas production from CO2 reforming of methane using Ce-doped Ni-catalysts obtained from hydrotalcites by reconstruction method. Applied Catalysis A: General, 2010, 378, 125-133.	2.2	81
12	Pillared clays with Al–Fe and Al–Ce–Fe in concentrated medium: Synthesis and catalytic activity. Applied Catalysis A: General, 2009, 356, 243-249.	2.2	71
13	Hydroconversion of Heptane over Pt/Al-Pillared Montmorillonites and Saponites. A Comparative Study. Journal of Catalysis, 1996, 162, 198-208.	3.1	68
14	Al-, Al,Zr-, and Zr-Pillared Montmorillonites and Saponites: Preparation, Characterization, and Catalytic Activity in Heptane Hydroconversion. Journal of Catalysis, 1999, 182, 174-185.	3.1	68
15	Catalytic performance of Ni–Pr supported on delaminated clay in the dry reforming of methane. International Journal of Hydrogen Energy, 2011, 36, 1540-1550.	3.8	64
16	Synthesis of Ce and Pr-promoted Ni and Co catalysts from hydrotalcite type precursors by reconstruction method. International Journal of Hydrogen Energy, 2012, 37, 18827-18842.	3.8	62
17	Dealumination of small- and large-port mordenites: A comparative study. Microporous Materials, 1997, 12, 197-222.	1.6	59
18	Hydroisomerization-Hydrocracking of Decane over Al- and Ga-Pillared Clays. Journal of Catalysis, 1994, 148, 304-314.	3.1	55

#	Article	IF	CITATIONS
19	Influence of Preparation Variables on the Structural, Textural, and Catalytic Properties of Al-Pillared Smectites. Journal of Physical Chemistry B, 1997, 101, 1569-1578.	1.2	49
20	Catalytic activity of Co–Mg mixed oxides in the VOC oxidation: Effects of ultrasonic assisted in the synthesis. Catalysis Today, 2011, 176, 286-291.	2.2	49
21	Al-pillared clays: from lab syntheses to pilot scale production characterisation and catalytic properties. Applied Catalysis A: General, 1997, 165, 103-114.	2.2	47
22	Gold supported on Fe, Ce, and Al pillared bentonites for CO oxidation reaction. Applied Catalysis B: Environmental, 2007, 72, 157-165.	10.8	46
23	A study on Al and Al–Ce–Fe pillaring species and their catalytic potential as they are supported on a bentonite. Applied Catalysis A: General, 2008, 334, 168-172.	2.2	46
24	Incorporation of titanium and titanium–iron species inside a smectite-type mineral for photocatalysis. Applied Clay Science, 2010, 50, 401-408.	2.6	45
25	Synthesis of pillared bentonite starting from the Al–Fe polymeric precursor in solid state, and its catalytic evaluation in the phenol oxidation reaction. Catalysis Today, 2008, 133-135, 530-533.	2.2	40
26	The effect of the absence of Ni, Co, and Ni–Co catalyst pretreatment on catalytic activity for hydrogen production via oxidative steam reforming of ethanol. International Journal of Hydrogen Energy, 2014, 39, 10074-10089.	3.8	39
27	Catalytic oxidation of VOCs on MnMgAlOx mixed oxides obtained by auto-combustion. Journal of Molecular Catalysis A, 2015, 398, 358-367.	4.8	37
28	Synthesis of pillared clays with Al13-Fe and Al13-Fe-Ce polymers in solid state assisted by microwave and ultrasound: Characterization and catalytic activity. Applied Catalysis A: General, 2009, 370, 7-15.	2.2	35
29	Effects of the cobalt content of catalysts prepared from hydrotalcites synthesized by ultrasound-assisted coprecipitation on hydrogen production by oxidative steam reforming of ethanol (OSRE). Fuel, 2017, 194, 7-16.	3.4	35
30	Effect of Mg and Al on manganese oxides as catalysts for VOC oxidation. Molecular Catalysis, 2017, 443, 117-124.	1.0	35
31	Synthesis of pillared clays with aluminum by means of concentrated suspensions and microwave radiation. Catalysis Communications, 2009, 10, 697-701.	1.6	34
32	Nickel catalysts obtained from hydrotalcites by coprecipitation and urea hydrolysis for hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 8225-8237.	3.8	34
33	Deposition of Al-Fe pillared bentonites and gold supported Al-Fe pillared bentonites on metallic monoliths for catalytic oxidation reactions. Applied Catalysis A: General, 2009, 364, 166-173.	2.2	30
34	Mechanical and textural properties of extruded materials manufactured with AlFe and AlCeFe pillared bentonites. Applied Clay Science, 2010, 47, 283-289.	2.6	30
35	Cooperative effect of Ce and Pr in the catalytic combustion of ethanol in mixed Cu/CoMgAl oxides obtained from hydrotalcites. Applied Catalysis A: General, 2011, 408, 96-104.	2.2	29
36	Ce-incorporation in mixed oxides obtained by the self-combustion method for the preparation of high performance catalysts for the CO2 reforming of methane. Catalysis Communications, 2010, 12, 173-179.	1.6	28

#	Article	IF	CITATIONS
37	Promoting effect of Ce and Pr in Co catalysts for hydrogen production via oxidative steam reforming of ethanol. Catalysis Today, 2013, 213, 33-41.	2.2	28
38	Enhanced VOC oxidation over Ce/CoMgAl mixed oxides using a reconstruction method with EDTA precursors. Applied Catalysis A: General, 2014, 477, 109-116.	2.2	28
39	Promoter effect of Ce and Pr on the catalytic stability of the Ni-Co system for the oxidative steam reforming of ethanol. Applied Catalysis A: General, 2016, 526, 84-94.	2.2	28
40	The effect of ultrasound in the synthesis of clays used as catalysts in oxidation reactions. Catalysis Today, 2008, 133-135, 526-529.	2.2	27
41	Synthesis of pillared clays with Al–Fe and Al–Fe–Ce starting from concentrated suspensions of clay using microwaves or ultrasound, and their catalytic activity in the phenol oxidation reaction. Applied Catalysis B: Environmental, 2009, 93, 56-65.	10.8	27
42	Effect of Ultrasound on the Structural and Textural Properties of Al–Fe Pillared Clays in a Concentrated Medium. Catalysis Letters, 2009, 130, 664-671.	1.4	25
43	High-Stable Mesoporous Ni-Ce/Clay Catalysts for Syngas Production. Catalysis Letters, 2011, 141, 1037-1046.	1.4	25
44	Oxidative steam reforming of ethanol (OSRE) over stable NiCo–MgAl catalysts by microwave or sonication assisted coprecipitation. International Journal of Hydrogen Energy, 2017, 42, 12284-12294.	3.8	24
45	Modified clays as catalysts for the catalytic oxidation of ethanol. Applied Clay Science, 2014, 95, 18-24.	2.6	23
46	New Insights into the Au(I)···Pb(II) Closed-Shell Interaction: Tuning of the Emissive Properties with the Intermetallic Distance. Inorganic Chemistry, 2016, 55, 10523-10534.	1.9	22
47	Decane hydroconversion with Al–Zr, Al–Hf, Al–Ce-pillared vermiculites. Applied Catalysis A: General, 2008, 345, 112-118.	2.2	21
48	Mn–Co–Al–Mg mixed oxides by auto-combustion method and their use as catalysts in the total oxidation of toluene. Journal of Molecular Catalysis A, 2013, 370, 167-174.	4.8	21
49	Hydroconversion of <i>n</i> -Decane over Ni–Mo Supported on Modified Halloysite Catalysts. Energy & Fuels, 2018, 32, 9782-9792.	2.5	21
50	Relationship between hydrothermal treatment parameters as a strategy to reduce layer charge in vermiculite, and its catalytic behavior. Catalysis Today, 2008, 133-135, 351-356.	2.2	18
51	Stability of Niâ^'Ce Catalysts Supported over Al-PVA Modified Mineral Clay in Dry Reforming of Methane. Energy & Fuels, 2009, 23, 3497-3509.	2.5	18
52	Heteropolyacids supported on clay minerals as bifunctional catalysts for the hydroconversion of decane. Applied Catalysis B: Environmental, 2021, 297, 120464.	10.8	18
53	Fractal dimension and energetic heterogeneity of gold-modified Al–Fe–Ce pilc's. Applied Surface Science, 2008, 255, 3354-3360.	3.1	17
54	Gold supported on pillared clays for CO oxidation reaction: Effect of the clay aggregate size. Applied Clay Science, 2012, 69, 22-29.	2.6	16

#	Article	IF	CITATIONS
55	Oxygen Storage Capacity and Oxygen Mobility of Co-Mn-Mg-Al Mixed Oxides and Their Relation in the VOC Oxidation Reaction. Catalysts, 2015, 5, 905-925.	1.6	16
56	Lead encapsulation by a golden clamp through multiple electrostatic, metallophilic, hydrogen bonding and weak interactions. Chemical Communications, 2018, 54, 295-298.	2.2	15
57	Degradation of Crystal Violet by Catalytic Wet Peroxide Oxidation (CWPO) with Mixed Mn/Cu Oxides. Catalysts, 2019, 9, 530.	1.6	15
58	Potentialization of bentonite properties as support in acid catalysts. Materials Research Bulletin, 2020, 123, 110728.	2.7	15
59	Development of Pillared Clays for Wet Hydrogen Peroxide Oxidation of Phenol and Its Application in the Posttreatment of Coffee Wastewater. International Journal of Photoenergy, 2012, 2012, 1-17.	1.4	14
60	Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium. Applied Surface Science, 2016, 383, 42-48.	3.1	14
61	Incorporation of Ni and Mo on delaminated clay by auto-combustion and impregnation for obtaining decane hydroconversion catalysts. Catalysis Today, 2017, 296, 205-213.	2.2	14
62	Hydrocracking of 1-methylnaphtalene (1MN) over modified clays-supported NiMoS and NiWS catalyst. Fuel, 2021, 295, 120612.	3.4	14
63	Spray-drying for the preparation of Al–Co–Cu pillared clays: A comparison with the conventional hot-drying method. Powder Technology, 2013, 239, 451-457.	2.1	13
64	Hydroconversion of heptane over a Colombian montmorillonite modified with mixed pillars of Al–Zr and Al–Si. Catalysis Today, 2005, 107-108, 426-430.	2.2	12
65	Mo or W catalysts promoted with Ni or Co supported on modified bentonite for decane hydroconversion. New Journal of Chemistry, 2020, 44, 2966-2979.	1.4	12
66	Rational Assembly of Metallophilic Gold(I)–Lead(II) and Gold(I)–Gold(I) Puzzle Pieces. Angewandte Chemie - International Edition, 2021, 60, 640-644.	7.2	11
67	Oxygen mobility and its relationship with the oxidative steam reforming of ethanol (OSRE). Applied Surface Science, 2019, 485, 293-303.	3.1	10
68	Al-pillared hectorite and montmorillonite prepared from concentrated clay suspensions: structural, textural and catalytic properties. Studies in Surface Science and Catalysis, 2000, 130, 983-988.	1.5	9
69	Acidity characterization of a titanium and sulfate modified vermiculite. Materials Research Bulletin, 2008, 43, 1630-1640.	2.7	8
70	Modified Vermiculite for Hydrocracking of Athabasca Bitumen. Energy & Fuels, 2019, 33, 5153-5161.	2.5	8
71	Pillarization in concentrated media with solid Al and Al-Zr polymers to obtain acid catalysts. Catalysis Today, 2020, 356, 284-291.	2.2	8
72	Hydroisomerization of decane on Pt/Al, Ce-pillared vermiculites. Studies in Surface Science and Catalysis, 2007, 170, 1405-1410.	1.5	7

#	Article	IF	CITATIONS
73	Ce - promoted catalyst from hydrotalcites for CO2 reforming of methane: calcination temperature effect. Quimica Nova, 2012, 35, 1325-1328.	0.3	7
74	Catalytic wet hydrogen peroxide oxidation of phenolic compounds in coffee wastewater using Al–Fe-pillared clay extrudates. Desalination and Water Treatment, 2015, 55, 647-654.	1.0	7
75	Relation between immersion enthalpy and the acidity of clay pillared minerals. Journal of Thermal Analysis and Calorimetry, 2008, 92, 899-904.	2.0	6
76	Comparison of the Catalytic Performance of Ni, Mo, and Ni–Mo Impregnated on Acid Halloysite Nanotubes in the <i>n</i> -Decane Hydroconversion. Energy & Fuels, 2019, 33, 12647-12655.	2.5	6
77	Bifunctional catalysts supported on modified vermiculite for the hydroconversion of decane. Effect of the metal phase (Mo or W) and promoters (Ni or Co). Catalysis Today, 2020, 356, 271-283.	2.2	6
78	Synthesis, characterization and catalytic activity of LayMOx (M=Ni, Co) perovskite-type particles intercalated in clay via heterobinuclear complexes. Applied Clay Science, 1998, 13, 49-63.	2.6	5
79	Mn, Mn-Cu and Mn-Co mixed oxides as catalysts synthesized from hydrotalcite type precursors for the total oxidation of ethanol. Studies in Surface Science and Catalysis, 2010, , 513-516.	1.5	5
80	Heterogeneous Catalysts in Pictet-Spengler-Type Reactions. Journal of Chemistry, 2013, 2013, 1-5.	0.9	5
81	CoMnMgAl mixed oxides prepared by a microwave assisted self-combustion synthesis for toluene total oxidation. Molecular Catalysis, 2020, 493, 111080.	1.0	5
82	Catalytic oxidation with Al–Ce–Fe–PILC as a post-treatment system for coffee wet processing wastewater. Water Science and Technology, 2012, 66, 1663-1668.	1.2	4
83	Modulation of the acidity of a vermiculite and its potential use as a catalytic support. Journal of Materials Science, 2020, 55, 6482-6501.	1.7	4
84	Influence of the Active Phase (Fe, Ni, and Ni–Fe) of Mixed Oxides in CWAO of Crystal Violet. Catalysts, 2020, 10, 1053.	1.6	3
85	Catalizadores de manganeso sintetizados por autocombustión y coprecipitación y su empleo en la oxidación del 2-propanol. Revista De La Academia Colombiana De Ciencias Exactas, Fisicas Y Naturales, 2015, 39, 26.	0.0	2
86	Approach to a Descriptive Model of Charge Reduction in Vermiculite by Hydrothermal Treatment. Clays and Clay Minerals, 2010, 58, 97-109.	0.6	1
87	Raschig Rings Based on Pillared Clays: Efficient Reusable Catalysts for Oxidation of Phenol. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	0
88	Modifying bentonite with Al-Fe from concentrated clay suspensions. Ingenieria E Investigacion, 2005, 25, 49-57.	0.2	0