Hanne Nina Rasmussen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2481837/publications.pdf

Version: 2024-02-01

41 papers 2,368 citations

20 h-index 315739 38 g-index

43 all docs 43 docs citations

43 times ranked

 $\begin{array}{c} 1230 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Recent developments in the study of orchid mycorrhiza. Plant and Soil, 2002, 244, 149-163.	3.7	279
2	Germination and seedling establishment in orchids: a complex of requirements. Annals of Botany, 2015, 116, 391-402.	2.9	216
3	Orchid mycorrhiza: implications of a mycophagous life style. Oikos, 2009, 118, 334-345.	2.7	211
4	Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. American Journal of Botany, 1993, 80, 1374-1378.	1.7	126
5	Seed Ecology of Dust Seeds in Situ: A New Study Technique and Its Application in Terrestrial Orchids. American Journal of Botany, 1993, 80, 1374.	1.7	114
6	Abundance and distribution of Corallorhiza odontorhiza reflect variations in climate and ectomycorrhizae. Ecological Monographs, 2009, 79, 619-635.	5.4	72
7	Cell differentiation and mycorrhizal infection in Dactylorhiza majalis (Rchb. f.) Hunt & Summerh. (Orchidaceae) during germination in vitro. New Phytologist, 1990, 116, 137-147.	7.3	70
8	Seed longevity in terrestrial orchids – Potential for persistent in situ seed banks. Biological Conservation, 2006, 129, 24-30.	4.1	68
9	Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy. New Phytologist, 2002, 154, 797-807.	7.3	67
10	Importance of woody debris in seed germination of Tipularia discolor (Orchidaceae). American Journal of Botany, 1998, 85, 829-834.	1.7	63
11	Seedling mycorrhiza: a discussion of origin and evolution in Orchidaceae. Botanical Journal of the Linnean Society, 2014, 175, 313-327.	1.6	52
12	The underground phase: a special challenge in studies of terrestrial orchid populations. Botanical Journal of the Linnean Society, 1998, 126, 49-64.	1.6	49
13	Molecular identification of mycorrhizal fungi in Neuwiedia veratrifolia (Orchidaceae). Molecular Phylogenetics and Evolution, 2004, 33, 251-258.	2.7	42
14	Seed dormancy patterns in Epipactis palustris (Orchidaceae): Requirements for germination and establishment of mycorrhiza. Physiologia Plantarum, 1992, 86, 161-167.	5.2	41
15	The epiphytic habitat on a living host: reflections on the orchid–tree relationship. Botanical Journal of the Linnean Society, 2018, 186, 456-472.	1.6	41
16	Recent developments in the study of orchid mycorrhiza., 2002,, 149-163.		38
17	Title is missing!. New Forests, 2000, 19, 205-214.	1.7	37
18	Temporal turnover in mycorrhizal interactions: a proof of concept with orchids. New Phytologist, 2021, 230, 1690-1699.	7.3	27

#	Article	IF	Citations
19	Composition of <i>Cypripedium calceolus</i> (Orchidaceae) seeds analyzed by attenuated total reflectance IR spectroscopy: In search of understanding longevity in the ground. American Journal of Botany, 2013, 100, 2066-2073.	1.7	26
20	Discreet heterotrophs: green plants that receive fungal carbon through ⟨i⟩Paris⟨li⟩â€ŧype arbuscular mycorrhiza. New Phytologist, 2020, 226, 960-966.	7.3	26
21	Cytokinin Profiles in the Conifer Tree Abies nordmanniana: Whole-Plant Relations in Year-Round Perspective. Journal of Plant Growth Regulation, 2009, 28, 154-166.	5.1	22
22	The Mycorrhizal Species of Rhizoctonia. , 1996, , 379-390.		22
23	Seedlings of Neuwiedia (Orchidaceae subfamily Apostasioideae) have typical orchidaceous mycotrophic protocorms. American Journal of Botany, 2001, 88, 956-959.	1.7	20
24	Partial mycoheterotrophy is common among chlorophyllous plants with <i>Paris</i> -type arbuscular mycorrhiza. Annals of Botany, 2021, 127, 645-653.	2.9	19
25	Genetic diversity, compatibility patterns and seed quality in isolated populations of Cypripedium calceolus (Orchidaceae). Conservation Genetics, 2012, 13, 89-98.	1.5	17
26	The underground phase: a special challenge in studies of terrestrial orchid populations. Botanical Journal of the Linnean Society, 1998, 126, 49-64.	1.6	14
27	Fungal diversity driven by bark features affects phorophyte preference in epiphytic orchids from southern China. Scientific Reports, 2021, 11, 11287.	3.3	13
28	Plagiotropism and auxin in Abies nordmanniana. Tree Physiology, 2007, 27, 149-153.	3.1	10
29	"Lateral Control― Phytohormone Relations in the Conifer Treetop and the Short- and Long-Term Effects of Bud Excision in Abies nordmanniana. Journal of Plant Growth Regulation, 2010, 29, 268-279.	5.1	9
30	Bud set in Abies nordmanniana Spach. influenced by bud and branch manipulations. Trees - Structure and Function, 2003, 17, 510-514.	1.9	8
31	Lateral Bud and Shoot Removal Affects Leader Growth in Abies nordmanniana. Scandinavian Journal of Forest Research, 2003, 18, 127-132.	1.4	7
32	Ontogeny in terminal buds of Abies nordmanniana (Pinaceae) characterized by ubiquitin. American Journal of Botany, 2008, 95, 766-771.	1.7	6
33	Cypripedium calceolus germination in situ: seed longevity, and dormancy breakage by long incubation and cold winters. European Journal of Environmental Sciences, 2012, 1, 69-70.	0.2	6
34	Cloning by cuttings in Nordmann fir, Abies nordmanniana: hormonal characteristics in relation crown position, rooting competence, and orthotropism as ramets. New Forests, 2020, 51, 781-800.	1.7	4
35	Why <i>Mycophoris</i> is not an orchid seedling, and why <i>Synaptomitus</i> is not a fungal symbiont within this fossil. Botany, 2017, 95, 865-868.	1.0	3
36	Estimation of life history in corticolous lichens by zonation. Lichenologist, 2018, 50, 697-704.	0.8	3

#	Article	IF	CITATIONS
37	Bark extract influence on spore germination in corticolous lichen Xanthoria parietina in vitro. Mycological Progress, 2021, 20, 313-323.	1.4	3
38	Methods of studying field germination and seedling physiology: present potential and drawbacks. European Journal of Environmental Sciences, 2012, 1, 55-59.	0.2	3
39	Crown architecture and dynamics in Abies procera as influenced by cutting for greenery. Trees - Structure and Function, 2005, 19, 619-627.	1.9	2
40	Deciduous trees as lichen phorophytes: biodiversity and colonization patterns under common garden conditions. Lichenologist, 2020, 52, 221-232.	0.8	2
41	Post-transplant root and shoot development inAbies nordmannianaSpach. seedlings after whorl bud and branch pruning. Annals of Forest Science, 2006, 63, 843-847.	2.0	0