Jean-François Ghersi-Egea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2481620/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebral concentration and toxicity of endocrine disrupting chemicals: The implication of blood-brain interfaces. NeuroToxicology, 2022, 91, 100-118.	1.4	9
2	Vascular network expansion, integrity of blood–brain interfaces, and cerebrospinal fluid cytokine concentration during postnatal development in the normal and jaundiced rat. Fluids and Barriers of the CNS, 2022, 19, .	2.4	8
3	Proteoglycan 4 Reduces Neuroinflammation and Protects the Blood–Brain Barrier after Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 385-398.	1.7	11
4	Purified IgG from aquaporin-4 neuromyelitis optica spectrum disorder patients alters blood-brain barrier permeability. PLoS ONE, 2020, 15, e0238301.	1.1	11
5	N-acetylcysteine inhibits bacterial lipopeptide-mediated neutrophil transmigration through the choroid plexus in the developing brain. Acta Neuropathologica Communications, 2020, 8, 4.	2.4	13
6	ToxPoint: Brain Barrier Systems Play No Small Roles in Toxicant-induced Brain Disorders. Toxicological Sciences, 2020, 175, 147-148.	1.4	11
7	Neuroprotective Mechanisms at the Blood-CSF Barrier of the Developing and Adult Brain. Physiology in Health and Disease, 2020, , 193-207.	0.2	2
8	Clinical Imaging of Choroid Plexus in Health and in Brain Disorders: A Mini-Review. Frontiers in Molecular Neuroscience, 2019, 12, 34.	1.4	33
9	Developmental differences in the expression of ABC transporters at rat brain barrier interfaces following chronic exposure to diallyl sulfide. Scientific Reports, 2019, 9, 5998.	1.6	18
10	Barriers to Drug Distribution into the Perinatal and Postnatal Brain. Pharmaceutical Research, 2018, 35, 84.	1.7	23
11	Glutathione Conjugation at the Blood–CSF Barrier Efficiently Prevents Exposure of the Developing Brain Fluid Environment to Blood-Borne Reactive Electrophilic Substances. Journal of Neuroscience, 2018, 38, 3466-3479.	1.7	23
12	Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathologica, 2018, 135, 337-361.	3.9	269
13	Choroid plexus glutathione peroxidases are instrumental in protecting the brain fluid environment from hydroperoxides during postnatal development. American Journal of Physiology - Cell Physiology, 2018, 315, C445-C456.	2.1	9
14	Blood–Brain Interfaces Organization in Relation to Inorganic Ion Transport, CSF Secretion, and Circulation. , 2017, , 29-48.		1
15	The Choroid Plexus and Cerebrospinal Fluid System: Roles in Neurodegenerative Diseases. , 2016, , 129-154.		1
16	T-Lymphocytes Traffic into the Brain across the Blood-CSF Barrier: Evidence Using a Reconstituted Choroid Plexus Epithelium. PLoS ONE, 2016, 11, e0150945.	1.1	63
17	Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier. Current Pharmaceutical Design, 2016, 22, 5463-5476.	0.9	69
18	Efflux transporters in blood-brain interfaces of the developing brain. Frontiers in Neuroscience, 2015, 9, 21.	1.4	109

#	Article	IF	CITATIONS
19	Blood-brain barrier dysfunction in disorders of the developing brain. Frontiers in Neuroscience, 2015, 9, 40.	1.4	119
20	Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study. Frontiers in Neuroscience, 2015, 9, 123.	1.4	37
21	The quest for a better insight into physiology of fluids and barriers of the brain: the exemplary career of Joseph D. Fenstermacher. Fluids and Barriers of the CNS, 2015, 12, 1.	2.4	19
22	Changes in the cerebrospinal fluid circulatory system of the developing rat: quantitative volumetric analysis and effect on blood-CSF permeability interpretation. Fluids and Barriers of the CNS, 2015, 12, 8.	2.4	15
23	Novel routes to either racemic or enantiopure α-amino-(4-hydroxy-pyrrolidin-3-yl)acetic acid derivatives and biological evaluation of a new promising pharmacological scaffold. European Journal of Medicinal Chemistry, 2015, 98, 237-249.	2.6	8
24	Drug Metabolism at the Blood–Brain and Blood–CSF Barriers. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 101-124.	0.2	2
25	Molecular characterization of circumventricular organs and third ventricle ependyma in the rat: potential markers for periventricular tumors. Neuropathology, 2013, 33, 17-29.	0.7	16
26	Developmental changes in the transcriptome of the rat choroid plexus in relation to neuroprotection. Fluids and Barriers of the CNS, 2013, 10, 25.	2.4	68
27	Mechanisms That Determine the Internal Environment of the Developing Brain: A Transcriptomic, Functional and Ultrastructural Approach. PLoS ONE, 2013, 8, e65629.	1.1	65
28	Posttraumatic Invasion of Monocytes across the Blood—Cerebrospinal Fluid Barrier. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 93-104.	2.4	112
29	Histopathologic and Ultrastructural Features and Claudin Expression in Papillary Tumors of the Pineal Region. American Journal of Surgical Pathology, 2012, 36, 916-928.	2.1	24
30	Brain leukocyte infiltration initiated by peripheral inflammation or experimental autoimmune encephalomyelitis occurs through pathways connected to the CSF-filled compartments of the forebrain and midbrain. Journal of Neuroinflammation, 2012, 9, 187.	3.1	91
31	Complexity and developmental changes in the expression pattern of claudins at the blood–CSF barrier. Histochemistry and Cell Biology, 2012, 138, 861-879.	0.8	100
32	Transport and Metabolism at Blood–Brain Interfaces and in Neural Cells: Relevance to Bilirubin-Induced Encephalopathy. Frontiers in Pharmacology, 2012, 3, 89.	1.6	29
33	Modulation of Mrp1 (ABCc1) and Pgp (ABCb1) by Bilirubin at the Blood-CSF and Blood-Brain Barriers in the Gunn Rat. PLoS ONE, 2011, 6, e16165.	1.1	48
34	Active transport at the blood-CSF barrier contributes to manganese influx into the brain. Journal of Neurochemistry, 2011, 117, no-no.	2.1	36
35	In Vitro Models of the Blood–Cerebrospinal Fluid Barrier and Their Use in Neurotoxicological Research. Neuromethods, 2011, , 161-184.	0.2	10
36	Pâ€glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2) Localize in the Microvessels Forming the Bloodâ€Tumor Barrier in Ependymomas. Brain Pathology, 2010, 20, 926-935.	2.1	25

#	Article	IF	CITATIONS
37	The Role of the Choroid Plexus in Neutrophil Invasion after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1503-1516.	2.4	137
38	Blood–brain interfaces and cerebral drug bioavailability. Revue Neurologique, 2009, 165, 1029-1038.	0.6	29
39	Blood-Brain Interfaces and Bilirubin-Induced Neurological Diseases. Current Pharmaceutical Design, 2009, 15, 2893-2907.	0.9	20
40	Differential expression of the multidrug resistanceâ€related proteins ABCb1 and ABCc1 between bloodâ€brain interfaces. Journal of Comparative Neurology, 2008, 510, 497-507.	0.9	135
41	Prostaglandin E2 metabolism in rat brain: Role of the blood-brain interfaces. Cerebrospinal Fluid Research, 2008, 5, 5.	0.5	19
42	Brain Protection at the Blood–Cerebrospinal Fluid Interface Involves a Glutathione-Dependent Metabolic Barrier Mechanism. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1165-1175.	2.4	52
43	Rat choroid plexuses contain myeloid progenitors capable of differentiation toward macrophage or dendritic cell phenotypes. Glia, 2006, 54, 160-171.	2.5	40
44	Impairment of blood-cerebrospinal fluid barrier properties by retrovirus-activated T lymphocytes: reduction in cerebrospinal fluid-to-blood efflux of prostaglandin E2. Journal of Neurochemistry, 2005, 94, 1580-1593.	2.1	23
45	Factors affecting delivery of antiviral drugs to the brain. Reviews in Medical Virology, 2005, 15, 105-133.	3.9	74
46	Detoxification systems, passive and specific transport for drugs at the blood?CSF barrier in normal and pathological situations. Advanced Drug Delivery Reviews, 2004, 56, 1717-1740.	6.6	87
47	Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicology and Applied Pharmacology, 2003, 192, 1-11.	1.3	417
48	Pro-Inflammatory Cytokines Modulate Matrix Metalloproteinase Secretion and Organic Anion Transport at the Blood-Cerebrospinal Fluid Barrier. Journal of Neuropathology and Experimental Neurology, 2003, 62, 1254-1264.	0.9	53
49	Choroid plexus controls brain availability of anti-HIV nucleoside analogs via pharmacologically inhibitable organic anion transporters. Aids, 2003, 17, 1473-1485.	1.0	56
50	Choroid Plexus Transporters for Drugs and Other Xenobiotics. Journal of Drug Targeting, 2002, 10, 353-357.	2.1	53
51	Brain drug delivery, drug metabolism, and multidrug resistance at the choroid plexus. Microscopy Research and Technique, 2001, 52, 83-88.	1.2	107
52	Are Blood-brain Interfaces Efficient in Protecting the Brain from Reactive Molecules ?. Advances in Experimental Medicine and Biology, 2001, 500, 359-364.	0.8	7
53	Neuroprotective and Detoxifying Mechanisms at the Blood-Brain Interfaces. , 2001, , 19-25.		0
54	Choroid Plexus in the Central Nervous System: Biology and Physiopathology. Journal of Neuropathology and Experimental Neurology, 2000, 59, 561-574.	0.9	266

#	Article	IF	CITATIONS
55	Demonstration of a Coupled Metabolism–Efflux Process at the Choroid Plexus as a Mechanism of Brain Protection Toward Xenobiotics. Journal of Neuroscience, 1999, 19, 6275-6289.	1.7	177
56	Electronic Spin Resonance Detection of Superoxide and Hydroxyl Radicals During the Reductive Metabolism of Drugs by Rat Brain Preparations and Isolated Cerebral Microvessels. Free Radical Biology and Medicine, 1998, 24, 1074-1081.	1.3	26
57	Organotypic rat brain culture as in vivo-like model system. Cytotechnology, 1996, 18, 283-291.	0.7	8
58	Induction and immunological characterization of the uridine diphosphate-glucuronosyltransferase conjugating 1-naphthol in the rat choroid plexus. Neuroscience Letters, 1994, 175, 37-40.	1.0	23
59	Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochemical Pharmacology, 1993, 45, 647-658.	2.0	105
60	Evidence for drug metabolism as a source of reactive species in the brain. , 1992, 62, 219-226.		4
61	Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Research Reviews, 1991, 16, 65-82.	9.1	175
62	Enzyme mediated superoxide radical formation initiated by exogenous molecules in rat brain preparations. Toxicology and Applied Pharmacology, 1991, 110, 107-117.	1.3	29
63	Distribution of cytochrome p450 activities towards alkoxyresorufin derivatives in rat brain regions, subcellular fractions and isolated cerebral microvessels. Biochemical Pharmacology, 1990, 40, 2145-2151.	2.0	57
64	A new aspect of the protective functions of the blood-brain barrier: Activities of four drug-metabolizing enzymes in isolated rat brain microvessels. Life Sciences, 1988, 42, 2515-2523.	2.0	95
65	Ethoxyresorufin O-deethylase activity in rat brain subcellular fractions. Neuroscience Letters, 1987, 76, 58-62.	1.0	40
66	Brain mitochondrial cytochrome P-450scc: Spectral and catalytic properties. Archives of Biochemistry and Biophysics, 1987, 254, 592-596.	1.4	44