
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2481374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biphenylene monolayer as a two-dimensional nonbenzenoid carbon allotrope: a first-principles study. Journal of Physics Condensed Matter, 2022, 34, 015001.	1.8	45
2	Investigation of vacancy defects and substitutional doping in AlSb monolayer with double layer honeycomb structure: a first-principles calculation. Journal of Physics Condensed Matter, 2022, 34, 065701.	1.8	18
3	Ab-initio-driven prediction of puckered penta-like PdPSeX (X O, S, Te) Janus monolayers: Study on the electronic, optical, mechanical and photocatalytic properties. Applied Surface Science, 2022, 582, 152356.	6.1	55
4	Epitaxial growth of <i>\hat{l}^2</i> -Ga2O3 by hot-wall MOCVD. AIP Advances, 2022, 12, .	1.3	17
5	Theoretical study on electronic, optical, magnetic and photocatalytic properties of codoped SrTiO3 for green energy application. , 2022, 168, 207302.		5
6	Novel two-dimensional ZnO ₂ , CdO ₂ and HgO ₂ monolayers: a first-principles-based prediction. New Journal of Chemistry, 2021, 45, 9368-9374.	2.8	6
7	Van der Waals heterostructure of graphene and germanane: tuning the ohmic contact by electrostatic gating and mechanical strain. Physical Chemistry Chemical Physics, 2021, 23, 21196-21206.	2.8	21
8	Surface modification of titanium carbide MXene monolayers (Ti ₂ C and) Tj ETQq0 0 0 rgBT /Overloc Chemical Physics, 2021, 23, 15319-15328.	k 10 Tf 50 2.8	467 Td (Ti <s 51</s
9	Point defects in two-dimensional BeO monolayer: a first-principles study on electronic and magnetic properties. Physical Chemistry Chemical Physics, 2021, 23, 24301-24312.	2.8	19
10	Electronic and optical properties of two-dimensional heterostructures and heterojunctions between doped-graphene and C- and N-containing materials. Physical Chemistry Chemical Physics, 2021, 23, 4865-4873.	2.8	21
11	MoSi ₂ N ₄ single-layer: a novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties. Journal Physics D: Applied Physics, 2021, 54, 155303.	2.8	160
12	Two-dimensional carbon nitride C ₆ N nanosheet with egg-comb-like structure and electronic properties of a semimetal. Nanotechnology, 2021, 32, 215702.	2.6	50
13	Semiconducting Chalcogenide Alloys Based on the (Ge, Sn, Pb) (S, Se, Te) Formula with Outstanding Properties: A First-Principles Calculation Study. ACS Omega, 2021, 6, 9433-9441.	3.5	20
14	Impact of Cr2O3 additives on the gas-sensitive properties of β-Ga2O3 thin films to oxygen, hydrogen, carbon monoxide, and toluene vapors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	20
15	Effect of electric field and vertical strain on the electro-optical properties of the MoSi2N4 bilayer: A first-principles calculation. Journal of Applied Physics, 2021, 129, .	2.5	48
16	ZnSnN ₂ in Real Space and kâ€Space: Lattice Constants, Dislocation Density, and Optical Band Gap. Advanced Optical Materials, 2021, 9, 2100015.	7.3	10
17	Surface functionalization of the honeycomb structure of zinc antimonide (ZnSb) monolayer: A first-Principles study. Surface Science, 2021, 707, 121796.	1.9	17
18	Ion implantation in β-Ga2O3: Physics and technology. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	45

#	Article	IF	CITATIONS
19	Point Defects in a Two-Dimensional ZnSnN ₂ Nanosheet: A First-Principles Study on the Electronic and Magnetic Properties. Journal of Physical Chemistry C, 2021, 125, 13067-13075.	3.1	26
20	Prediction of two-dimensional bismuth-based chalcogenides Bi ₂ X ₃ (X = S, Se,) Tj ETQ Physics, 2021, 54, 395103.	2q0 0 0 rgB 2.8	T /Overlock 10 42
21	Metal-doped KNbO3 for visible light photocatalytic water splitting: A first principles investigation. Applied Physics Letters, 2021, 119, .	3.3	15
22	A novel two-dimensional boron–carbon–nitride (BCN) monolayer: A first-principles insight. Journal of Applied Physics, 2021, 130, .	2.5	23
23	Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping. Applied Surface Science, 2021, 559, 149862.	6.1	81
24	Adsorption of habitat and industry-relevant molecules on the MoSi2N4 monolayer. Applied Surface Science, 2021, 564, 150326.	6.1	50
25	Ion-beam modification of metastable gallium oxide polymorphs. Materials Letters, 2021, 302, 130346.	2.6	14
26	Two-dimensional buckled tetragonal cadmium chalcogenides including CdS, CdSe, and CdTe monolayers as photo-catalysts for water splitting. Physical Chemistry Chemical Physics, 2021, 23, 12226-12232.	2.8	35
27	Two-dimensional FeTe ₂ and predicted Janus FeXS (X: Te and Se) monolayers with intrinsic half-metallic character: tunable electronic and magnetic properties <i>via</i> strain and electric field. Physical Chemistry Chemical Physics, 2021, 23, 24336-24343.	2.8	44
28	A new plasma-based approach to hydrogen intercalation of graphene. Superlattices and Microstructures, 2021, 160, 107066.	3.1	1
29	Synthesis of gallium oxide via interaction of gallium with iodide pentoxide in plasma. Optical and Quantum Electronics, 2020, 52, 1.	3.3	15
30	Vertical two-dimensional layered conjugated porous organic network structures of poly-benzimidazobenzophenanthroline (BBL): A first-principles study. Applied Physics Letters, 2020, 117, .	3.3	16
31	High electron mobility single-crystalline ZnSnN ₂ on ZnO (0001) substrates. CrystEngComm, 2020, 22, 6268-6274.	2.6	13
32	First-principles investigation of nonmetal doped single-layer BiOBr as a potential photocatalyst with a low recombination rate. Physical Chemistry Chemical Physics, 2020, 22, 15354-15364.	2.8	74
33	Bulk In2O3 crystals grown by chemical vapour transport: a combination of XPS and DFT studies. Journal of Materials Science: Materials in Electronics, 2019, 30, 18753-18758.	2.2	12
34	Some insights into the mechanism of photoluminescence of As-S-based films synthesized by PECVD. Journal of Non-Crystalline Solids, 2019, 513, 120-124.	3.1	5
35	A Method for Deep Purification of Iodine for Semiconductor Applications. , 2019, , .		Ο
36	A novel plasma-based method for synthesis of As-Se-Te films: Impact of plasma parameters on the structure, composition, and optical properties. Superlattices and Microstructures, 2019, 128, 334-341.	3.1	6

#	Article	IF	CITATIONS
37	Optical emission of two-dimensional arsenic sulfide prepared by plasma. Superlattices and Microstructures, 2018, 114, 305-313.	3.1	31
38	Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3. Journal of Applied Physics, 2018, 123, .	2.5	73
39	Investigation of the composition-structure-property relationship of AsxTe100x films prepared by plasma deposition. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 191, 211-216.	3.9	40
40	Infrared and Raman spectroscopy study of As S chalcogenide films prepared by plasma-enhanced chemical vapor deposition. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 193, 258-263.	3.9	16
41	A novel method for synthesis of arsenic sulfide films employing conversion of arsenic monosulfide in a plasma discharge. Superlattices and Microstructures, 2018, 120, 264-271.	3.1	8
42	Atomic structure, electronic states, and optical properties of epitaxially grown β-Ga2O3 layers. Superlattices and Microstructures, 2018, 120, 90-100.	3.1	60
43	Some new insights into the impact of annealing on single stacking faults in 4H-SiC. Superlattices and Microstructures, 2018, 120, 7-14.	3.1	8
44	Electrical Properties of Bulk, Non-Polar, Semi-Insulating M-GaN Grown by the Ammonothermal Method. ECS Journal of Solid State Science and Technology, 2018, 7, P260-P265.	1.8	13
45	A new method for synthesis of As-Te chalcogenide films. Superlattices and Microstructures, 2017, 111, 173-180.	3.1	23
46	Structural and optical properties of arsenic sulfide films synthesized by a novel PECVD-based approach. Superlattices and Microstructures, 2017, 111, 1104-1112.	3.1	40
47	Anisotropy, phonon modes, and free charge carrier parameters in monoclinic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>β</mml:mi>-gallium oxide single crystals. Physical Review B, 2016, 93, .</mml:math 	3.2	147
48	Reactive magnetron sputtering of Nb-doped TiO2 films: Relationships between structure, composition and electrical properties. Thin Solid Films, 2016, 605, 44-52.	1.8	44
49	Electrical compensation by Ga vacancies in Ga2O3 thin films. Applied Physics Letters, 2015, 106, .	3.3	142
50	Effect of indium as a surfactant in (Ga _{1â^{^*}<i>x</i>} In _{<i>x</i>}) ₂ O ₃ epitaxial growth on <i>β</i> -Ga ₂ O ₃ by metal organic vapour phase epitaxy. Semiconductor Science and Technology, 2015, 30, 024013.	2.0	40
51	Homo- and heteroepitaxial growth of Sn-doped β-Ga ₂ O ₃ layers by MOVPE. CrystEngComm, 2015, 17, 6744-6752.	2.6	113
52	Epitaxial stabilization of pseudomorphic α-Ga ₂ O ₃ on sapphire (0001). Applied Physics Express, 2015, 8, 011101.	2.4	104
53	Surface roughness evolution in a solid-on-solid model of epitaxial growth. Applied Physics A: Materials Science and Processing, 2015, 118, 337-343.	2.3	3
54	Homoepitaxial growth of βâ€Ga ₂ O ₃ layers by metalâ€organic vapor phase epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 27-33.	1.8	170

#	Article	IF	CITATIONS
55	Heteroepitaxy of Ga _{2(1‑x)} In _{2x} O ₃ layers by MOVPE with two different oxygen sources. Crystal Research and Technology, 2014, 49, 552-557.	1.3	30
56	The role of NH3 and hydrocarbon mixtures in GaN pseudo-halide CVD: a quantum chemical study. Journal of Molecular Modeling, 2014, 20, 2473.	1.8	4
57	Initial results for epitaxial growth of InN on gallium oxide and improved Migration-Enhanced Afterglow Epitaxy growth on gallium nitride. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, .	1.2	7
58	Structural properties of Si-doped β-Ga2O3 layers grown by MOVPE. Journal of Crystal Growth, 2014, 401, 665-669.	1.5	133
59	Correction to Gas-Phase Reactions Regarding GaN Crystal Growth in a Carbon-Based Transport System: A Quantum Chemical Study. Crystal Growth and Design, 2013, 13, 5507-5507.	3.0	0
60	InN nanopillars grown from In-rich conditions by migration enhanced afterglow technique. Materials Letters, 2013, 106, 155-157.	2.6	8
61	Gas-Phase Reactions Regarding GaN Crystal Growth in a Carbon-Based Transport System: A Quantum Chemical Study. Crystal Growth and Design, 2013, 13, 1445-1457.	3.0	5
62	Structural and optical investigation of non-polar (1-100) GaN grown by the ammonothermal method. Journal of Applied Physics, 2013, 113, .	2.5	46
63	The influence of substrate morphology on thickness uniformity and unintentional doping of epitaxial graphene on SiC. Applied Physics Letters, 2012, 100, .	3.3	45
64	A new approach to free-standing GaN using β-Ga2O3 as a substrate. CrystEngComm, 2012, 14, 8536.	2.6	37
65	Chlorineâ€free plasmaâ€based vapour growth of GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 440-444.	0.8	3
66	Growth and structural, optical and electrical properties study of bulk GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1048-1052.	0.8	1
67	A new approach to grow Câ€doped GaN thick epitaxial layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2120-2122.	0.8	10
68	PVT growth of GaN bulk crystals. Journal of Crystal Growth, 2011, 318, 406-410.	1.5	12
69	Reduction of the dislocation density in HVPE-grown GaN epi-layers by an in situ SiNx treatment. Journal of Crystal Growth, 2010, 312, 595-600.	1.5	8
70	Pseudohalide vapour growth of thick GaN layers. Journal of Crystal Growth, 2010, 312, 750-755.	1.5	9
71	HVPE GaN substrates: growth and characterization. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1756-1759.	0.8	4
72	Aligned AlN nanowires by self-organized vapor–solid growth. Nanotechnology, 2009, 20, 495304.	2.6	41

#	Article	IF	CITATIONS
73	Microscopic lateral overgrowth by physical vapour transport of GaN on selfâ€organized diamondâ€like carbon masks. Crystal Research and Technology, 2009, 44, 1078-1082.	1.3	2
74	Comparative study of gasochromic and electrochromic effect in thermally evaporated tungsten oxide thin films. Thin Solid Films, 2009, 517, 3326-3331.	1.8	49
75	The role of carbon in transport processes during PVT growth of bulk GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1484-1487.	0.8	8
76	Growth of single crystalline GaN from chlorine-free gas phase. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1543-1546.	0.8	3
77	Growth of GaN crystals from chlorine-free gas phase. Journal of Crystal Growth, 2008, 310, 916-919.	1.5	10
78	All-optical characterization of carrier lifetimes and diffusion lengths in MOCVD-, ELO-, and HVPE-grown GaN. Journal of Crystal Growth, 2007, 300, 223-227.	1.5	31
79	Investigations of the growth conditions for GaN-bulk crystals grown by the sublimation technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2219-2222.	0.8	3
80	Contribution of dislocations to carrier recombination and transport in highly excited ELO and HVPE GaN layers. Physica Status Solidi (B): Basic Research, 2006, 243, 1426-1430.	1.5	32
81	Nearly stress-free substrates for GaN homoepitaxy. Journal of Crystal Growth, 2006, 293, 462-468.	1.5	43
82	Large-area free-standing GaN substrate grown by hydride vapor phase epitaxy on epitaxial lateral overgrown GaN template. Physica B: Condensed Matter, 2006, 371, 133-139.	2.7	15
83	Optical and structural studies of high-quality bulk-like GaN grown by HVPE on a MOVPE AlN buffer layer. Semiconductor Science and Technology, 2006, 21, 702-708.	2.0	16
84	Highly homogeneous bulk-like 2′′ GaN grown by HVPE on MOCVD–GaN template. Journal of Crystal Growth, 2005, 275, e387-e393.	1.5	9
85	Growth of thick GaN layers with hydride vapour phase epitaxy. Journal of Crystal Growth, 2005, 281, 17-31.	1.5	55
86	High frequency electromagnetic field processing of amorphous silicon layers containing nanoclusters produced by implantation of metal ions in Si(100) matrix. Nuclear Instruments & Methods in Physics Research B, 2005, 229, 65-72.	1.4	5
87	Analogy for the maximum obtainable colouration between electrochromic, gasochromic, and electrocolouration in DC-sputtered thin WO3â°'y films. Thin Solid Films, 2005, 476, 185-189.	1.8	42
88	On the structure, stress and optical properties of CVD tungsten oxide films. Materials Research Bulletin, 2005, 40, 333-340.	5.2	33
89	Application of picosecond four-wave mixing and photoluminescence techniques for investigation of carrier dynamics in bulk crystals and heterostructures of GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1006-1009.	0.8	7
90	Positron annihilation study of HVPE grown thick GaN layers. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 713-717.	1.8	7

#	Article	IF	CITATIONS
91	High-Quality 2'' Bulk-Like Free-Standing GaN Grown by HydrideVapour Phase Epitaxy on a Si-doped Metal Organic Vapour Phase Epitaxial GaN Template with an Ultra Low Dislocation Density. Japanese Journal of Applied Physics, 2005, 44, 1181-1185.	1.5	45
92	Investigation of the structural and optical properties of free-standing GaN grown by HVPE. Journal Physics D: Applied Physics, 2005, 38, 2332-2337.	2.8	17
93	Characterization of crack-free relaxed GaN grown on 2″ sapphire. Journal of Applied Physics, 2005, 98, 073525.	2.5	6
94	Characterization of High-Quality Free-Standing GaN Grown by HVPE. Physica Scripta, 2004, T114, 18-21.	2.5	4
95	Strain-free bulk-like GaN grown by hydride-vapor-phase-epitaxy on two-step epitaxial lateral overgrown GaN template. Journal of Applied Physics, 2004, 96, 799-806.	2.5	52
96	Optical and Structural Characteristics of Virtually Unstrained Bulk-Like GaN. Japanese Journal of Applied Physics, 2004, 43, 1264-1268.	1.5	37
97	Micro-Raman scattering profiling studies on HVPE-grown free-standing GaN. Physica Status Solidi A, 2004, 201, 2773-2776.	1.7	12
98	Study of the surfaces of CVD-WO3 films, by atomic force microscopy and spectroscopic ellipsometry. Journal of Materials Science: Materials in Electronics, 2003, 14, 769-770.	2.2	1
99	Fast growth of high quality GaN. Physica Status Solidi A, 2003, 200, 13-17.	1.7	42
100	Free-standing HVPE-GaN Layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1985-1988.	0.8	2
101	Study of the surface roughness of CVD-tungsten oxide thin films. Applied Surface Science, 2003, 218, 163-169.	6.1	25
102	Spectroscopic characterization of CVD-molybdenum oxide films. Electrochimica Acta, 2001, 46, 2215-2219.	5.2	39
103	Investigation of the structure of tungsten oxide films obtained by chemical vapor deposition. EPJ Applied Physics, 2000, 11, 167-174.	0.7	31
104	Formation of MoSi2 by rapid thermal annealing in vacuum of CVD – Mo films on silicon substrate. Vacuum, 2000, 58, 502-508.	3.5	4
105	Investigations of a buffer layer grown on a CdTe surface. Journal of Physics Condensed Matter, 1999, 11, 10003-10006.	1.8	4
106	Study of thin chemical vapour deposited tungsten oxide films by positron annihilation spectroscopy. Thin Solid Films, 1999, 347, 302-306.	1.8	10
107	Optical properties of thin CVD-tungsten oxide films by spectroscopic ellipsometry. Journal of Crystal Growth, 1999, 198-199, 1235-1239.	1.5	16
108	Electrochromic behavior in CVD grown tungsten oxide films. Journal of Crystal Growth, 1999, 198-199, 1230-1234.	1.5	40

#	Article	IF	CITATIONS
109	Structural and Optical Properties of CVD Thin Tungsten Oxide Films. Physica Status Solidi A, 1999, 176, 969-984.	1.7	45
110	Deposition and characterization of CVD – MoO ₃ thin films. European Physical Journal Special Topics, 1999, 09, Pr8-453-Pr8-459.	0.2	8
111	A study of the effect of KClO3 addition on the AC susceptibility and microstructure of high-temperature (Tconset at 105 K) YBCO ceramic superconductors. Physica C: Superconductivity and Its Applications, 1998, 308, 175-184.	1.2	31
112	CVD–WC and WCxNy diffusion barrier coatings on WC/Co metalloceramics. Materials Letters, 1998, 35, 351-356.	2.6	10
113	APCVD - In-Situ Growing and Investigation of Electrochromic WO3Films. Materials Research Society Symposia Proceedings, 1995, 415, 155.	0.1	7
114	Analysis of the Formation Conditions for Large Area Epitaxial Graphene on SiC Substrates. Materials Science Forum, 0, 645-648, 565-568.	0.3	62
115	Free Standing AlN Single Crystal Grown on Pre-Patterned and <i>In Situ</i> Patterned 4H-SiC Substrates. Materials Science Forum, 0, 645-648, 1187-1190.	0.3	1