Farhana R Pinu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2481361/publications.pdf

Version: 2024-02-01

24 papers

1,713 citations

471509 17 h-index 23 g-index

24 all docs

24 docs citations 24 times ranked 2817 citing authors

#	Article	IF	CITATIONS
1	Mass Spectrometry-Based Metabolomics to Investigate the Effect of Mechanical Shaking on Sauvignon Blanc Berry Metabolism. Journal of Agricultural and Food Chemistry, 2021, 69, 4918-4933.	5.2	7
2	Application of untargeted volatile profiling and data driven approaches in wine flavoromics research. Food Research International, 2021, 145, 110392.	6.2	14
3	Translational Metabolomics: Current Challenges and Future Opportunities. Metabolites, 2019, 9, 108.	2.9	136
4	Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community. Metabolites, 2019, 9, 76.	2.9	387
5	Juice Index: an integrated Sauvignon blanc grape and wine metabolomics database shows mainly seasonal differences. Metabolomics, 2019, 15, 3.	3.0	17
6	Pre-fermentative supplementation of fatty acids alters the metabolic activity of wine yeasts. Food Research International, 2019, 121, 835-844.	6.2	17
7	Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test. Metabolomics, 2018, 14, 43.	3.0	66
8	Grape and Wine Metabolomics to Develop New Insights Using Untargeted and Targeted Approaches. Fermentation, 2018, 4, 92.	3.0	56
9	Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics, 2018, 14, 152.	3.0	314
10	Effect of free fatty acids and lipolysis on Sauvignon Blanc fermentation. Australian Journal of Grape and Wine Research, 2018, 24, 398-405.	2.1	13
11	The fate of linoleic acid on Saccharomyces cerevisiae metabolism under aerobic and anaerobic conditions. Metabolomics, 2018, 14, 103.	3.0	9
12	Fully Automated Trimethylsilyl (TMS) Derivatisation Protocol for Metabolite Profiling by GC-MS. Metabolites, 2017, 7, 1.	2.9	81
13	Rapid Quantification of Major Volatile Metabolites in Fermented Food and Beverages Using Gas Chromatography-Mass Spectrometry. Metabolites, 2017, 7, 37.	2.9	37
14	Extracellular Microbial Metabolomics: The State of the Art. Metabolites, 2017, 7, 43.	2.9	94
15	Analysis of Intracellular Metabolites from Microorganisms: Quenching and Extraction Protocols. Metabolites, 2017, 7, 53.	2.9	127
16	Vinegar Metabolomics: An Explorative Study of Commercial Balsamic Vinegars Using Gas Chromatography-Mass Spectrometry. Metabolites, 2016, 6, 22.	2.9	30
17	The effect of linoleic acid on the Sauvignon blanc fermentation by different wine yeast strains. FEMS Yeast Research, 2016, 16, fow050.	2.3	27
18	Metabolomics: Applications to Food Safety and Quality Research. , 2016, , 225-259.		6

#	Article	IF	CITATION
19	Early detection of food pathogens and food spoilage microorganisms: Application of metabolomics. Trends in Food Science and Technology, 2016, 54, 213-215.	15.1	68
20	Metabolomicsâ€"The new frontier in food safety and quality research. Food Research International, 2015, 72, 80-81.	6.2	36
21	Can we predict the intracellular metabolic state of a cell based on extracellular metabolite data?. Molecular BioSystems, 2015, 11, 3297-3304.	2.9	21
22	Sauvignon blanc metabolomics: grape juice metabolites affecting the development of varietal thiols and other aroma compounds in wines. Metabolomics, 2014, 10, 556-573.	3.0	74
23	Nitrogen and carbon assimilation by <i>Saccharomyces cerevisiae</i> during Sauvignon blanc juice fermentation. FEMS Yeast Research, 2014, 14, 1206-1222.	2.3	33
24	Concentrations of the Volatile Thiol 3-Mercaptohexanol in Sauvignon blanc Wines: No Correlation with Juice Precursors. American Journal of Enology and Viticulture, 2012, 63, 407-412.	1.7	43