Xiaoyu Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2481306/publications.pdf Version: 2024-02-01

		117625	138484
113	3,941	34	58
papers	citations	h-index	g-index
113	113	113	2783
all docs	docs citations	times ranked	citing authors

Χιλογμ Πλι

#	Article	IF	CITATIONS
1	MoTe2 quantum dots-based all-optical switching. Optics Communications, 2022, 506, 127573.	2.1	7
2	Ultrasensitive terahertz sensing in all-dielectric asymmetric metasurfaces based on quasi-BIC. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 286.	2.1	20
3	Determination of tilt degree and Weyl-node separation by the spatial Imbert-Fedorov shift near the Brewster angle. Physical Review A, 2022, 105, .	2.5	10
4	Engineering rainbow trapping and releasing in valley photonic crystal with electro-optical material. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1241.	2.1	6
5	Topological Slow Light Rainbow Trapping and Releasing Based on Gradient Valley Photonic Crystal. Journal of Lightwave Technology, 2022, 40, 5152-5156.	4.6	16
6	Tunable and enhanced Faraday rotation induced by the epsilon-near-zero response of a Weyl semimetal. Physical Review A, 2022, 105, .	2.5	10
7	Bandgap tunable preparation of GaS nanosheets and their application in photoelectrochemical photodetectors. Science China Technological Sciences, 2022, 65, 2297-2303.	4.0	3
8	Low threshold optical bistability based on topological edge state in photonic crystal heterostructure with Dirac semimetal. Optics Express, 2022, 30, 20847.	3.4	13
9	Enhanced and tunable asymmetric Imbert–Fedorov and Goos–HÃ ¤ chen shifts based on epsilon-near-zero response of Weyl semi-metal. Journal Physics D: Applied Physics, 2022, 55, 395106.	2.8	4
10	High Figure of Merit in Lossy Mode Resonance Sensors with PtSe2 Thin Film. Plasmonics, 2021, 16, 729-735.	3.4	4
11	Highly Sensitive Surface Plasmon Resonance Sensor Modified With 2D Tiâ,,C MXene for Solution Detection. IEEE Sensors Journal, 2021, 21, 347-352.	4.7	16
12	Spin–orbit interactions in a nonlinear medium due to a nonlinear-induced geometric phase. Optics Letters, 2021, 46, 2758.	3.3	7
13	Ultrasensitive and Tunable Sensor Based on Plasmon-Induced Transparency in a Black Phosphorus Metasurface. Plasmonics, 2021, 16, 1071-1077.	3.4	7
14	Self-Referenced Refractive Index Biosensing with Graphene Fano Resonance Modes. Biosensors, 2021, 11, 400.	4.7	7
15	High Sensitivity Terahertz Biosensor Based on Mode Coupling of a Graphene/Bragg Reflector Hybrid Structure. Biosensors, 2021, 11, 377.	4.7	6
16	Theoretical Model for a Highly Sensitive Near Infrared Biosensor Based on Bloch Surface Wave with Dirac Semimetal. Biosensors, 2021, 11, 390.	4.7	4
17	GeSe nanosheets modified surface plasmon resonance sensors for enhancing sensitivity. Nanophotonics, 2020, 9, 327-336.	6.0	24
18	Tunable and Multichannel Terahertz Perfect Absorber Due to Tamm Plasmons with Topological Insulators. Plasmonics, 2020, 15, 83-91.	3.4	9

#	Article	IF	CITATIONS
19	Ultrasensitive Multiple Guided-Mode Biosensor With Few-Layer Black Phosphorus. Journal of Lightwave Technology, 2020, 38, 1564-1571.	4.6	11
20	Nonlinear absorption-induced transparency and extinction of boron nanosheets. Optical Materials, 2020, 108, 110199.	3.6	6
21	Recent Advances in Spatial Selfâ€Phase Modulation with 2D Materials and its Applications. Annalen Der Physik, 2020, 532, 2000322.	2.4	32
22	Low-Threshold and Tunable Optical Bistability Based on Topological Edge State in One-Dimensional Photonic Crystal Heterostructure With Graphene. IEEE Access, 2020, 8, 196386-196393.	4.2	11
23	Broadband nonlinear optical response in GeSe nanoplates and its applications in all-optical diode. Nanophotonics, 2020, 9, 2007-2015.	6.0	20
24	Liquidâ€Exfoliated Fewâ€Layer InSe Nanosheets for Broadband Nonlinear Allâ€Optical Applications. Advanced Optical Materials, 2020, 8, 1901862.	7.3	20
25	Topological insulator overlayer to enhance the sensitivity and detection limit of surface plasmon resonance sensor. Nanophotonics, 2020, 9, 1941-1951.	6.0	18
26	Liquid phase exfoliated boron nanosheets for all-optical modulation and logic gates. Science Bulletin, 2020, 65, 1030-1038.	9.0	20
27	Enhancement of graphene Faraday rotation in the one-dimensional topological photonic crystals. Optics Express, 2020, 28, 24560.	3.4	14
28	Graphene-based low-threshold and tunable optical bistability in one-dimensional photonic crystal Fano resonance heterostructure at optical communication band. Optics Express, 2020, 28, 34948.	3.4	20
29	All-optical applications for passive photonic devices of TaS2 nanosheets with strong Kerr nonlinearity. Journal of Alloys and Compounds, 2019, 806, 999-1007.	5.5	9
30	Ultra-Sensitive Refractive Index Sensors Based on Bloch Surface Waves With Transition Metal Dichalcogenides. IEEE Sensors Journal, 2019, 19, 8675-8680.	4.7	24
31	High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator. Results in Physics, 2019, 14, 102477.	4.1	34
32	SPPs in a double layer graphene system with an anisotropic dielectric. Results in Physics, 2019, 15, 102718.	4.1	6
33	Two-dimensional Bi ₂ S ₃ -based all-optical photonic devices with strong nonlinearity due to spatial self-phase modulation. Nanophotonics, 2019, 8, 2225-2234.	6.0	27
34	Giant tunable Goos–Hächen shifts based on surface plasmon resonance with Dirac semimetal films. Journal Physics D: Applied Physics, 2019, 53, 015107.	2.8	14
35	Theoretical Investigation of Multilayer Ti ₃ C ₂ T _x MXene as the Plasmonic Material for Surface Plasmon Resonance Sensors in Near Infrared Region. IEEE Sensors Journal, 2019, 19, 11834-11838.	4.7	34
36	Tunable mid-infrared perfect absorber based on the critical coupling of graphene and black phosphorus nanoribbons. Results in Physics, 2019, 15, 102677.	4.1	9

#	Article	IF	CITATIONS
37	Tunable reflected group delay from the graphene/hBN heterostructure at infrared frequencies. Results in Physics, 2019, 15, 102681.	4.1	4
38	Excitation of graphene magneto-plasmons in terahertz range and giant Kerr rotation. Journal of Applied Physics, 2019, 125, .	2.5	7
39	Photodetectors: Enhanced Photodetection Properties of Tellurium@Selenium Rollâ€ŧoâ€Roll Nanotube Heterojunctions (Small 23/2019). Small, 2019, 15, 1970125.	10.0	14
40	Sensitivity enhancement of surface plasmon resonance sensors with 2D franckeite nanosheets. Results in Physics, 2019, 13, 102320.	4.1	39
41	Enhanced Photodetection Properties of Tellurium@Selenium Rollâ€ŧoâ€Roll Nanotube Heterojunctions. Small, 2019, 15, e1900902.	10.0	120
42	Application of Few-Layer Transition Metal Dichalcogenides to Detect the Refractive Index Variation in Lossy-Mode Resonance Sensors With High Figure of Merit. IEEE Sensors Journal, 2019, 19, 5030-5034.	4.7	14
43	A promising nonlinear optical material and its applications for all-optical switching and information converters based on the spatial self-phase modulation (SSPM) effect of TaSe ₂ nanosheets. Journal of Materials Chemistry C, 2019, 7, 3811-3816.	5.5	41
44	Nonlinear optical response, all optical switching, and all optical information conversion in NbSe ₂ nanosheets based on spatial self-phase modulation. Nanoscale, 2019, 11, 4515-4522.	5.6	61
45	Spatial self-phase modulation and all-optical switching of graphene oxide dispersions. Journal of Alloys and Compounds, 2019, 771, 900-904.	5.5	35
46	Enhancement of photonic spin Hall effect via bound states in the continuum. Journal Physics D: Applied Physics, 2019, 52, 045401.	2.8	23
47	High Figure of Merit Lossy Mode Resonance Sensor with Graphene. Plasmonics, 2019, 14, 929-934.	3.4	13
48	Sensitivity Enhancement of a Surface Plasmon Resonance with Tin Selenide (SnSe) Allotropes. Sensors, 2019, 19, 173.	3.8	50
49	Enhanced nonlinear optical responses of graphene in multi-frequency topological edge modes. Optics Express, 2019, 27, 32746.	3.4	15
50	Graphene Tamm plasmon-induced low-threshold optical bistability at terahertz frequencies. Optical Materials Express, 2019, 9, 139.	3.0	34
51	Resonant optical tunneling-induced enhancement of the photonic spin Hall effect. Journal Physics D: Applied Physics, 2018, 51, 145104.	2.8	29
52	High Sensitivity Intensity-Interrogated Bloch Surface Wave Biosensor With Graphene. IEEE Sensors Journal, 2018, 18, 106-110.	4.7	19
53	Highly Sensitive Terahertz Gas Sensor Based on Surface Plasmon Resonance With Graphene. IEEE Photonics Journal, 2018, 10, 1-7.	2.0	46
54	Facile fabrication and characterization of two-dimensional bismuth(<scp>iii</scp>) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale, 2018, 10, 2404-2412.	5.6	166

#	Article	IF	CITATIONS
55	Optical single sideband millimeter-wave signal generation and transmission using 120°Âhybrid coupler. Optics Communications, 2018, 411, 21-26.	2.1	15
56	High-Performance Lossy-Mode Resonance Sensor Based on Few-Layer Black Phosphorus. Journal of Physical Chemistry C, 2018, 122, 7368-7373.	3.1	47
57	Sensitivity Enhanced by MoS2–Graphene Hybrid Structure in Guided-Wave Surface Plasmon Resonance Biosensor. Plasmonics, 2018, 13, 281-285.	3.4	46
58	Dual-Band Infrared Near-Perfect Absorption by Fabry-Perot Resonances and Surface Phonons. Plasmonics, 2018, 13, 803-809.	3.4	12
59	Enhanced Photonic Spin Hall Effect with a Bimetallic Film Surface Plasmon Resonance. Plasmonics, 2018, 13, 1467-1473.	3.4	18
60	Two-dimensional beta-lead oxide quantum dots. Nanoscale, 2018, 10, 20540-20547.	5.6	49
61	Fano Resonance in Waveguide Coupled Surface Exciton Polaritons: Theory and Application in Biosensor. Sensors, 2018, 18, 4437.	3.8	3
62	Thermotunable Terahertz Negative-Index Metamaterials with Dielectric Spheres Embedded in Semiconductor Host. Advances in Condensed Matter Physics, 2018, 2018, 1-6.	1.1	1
63	Ultrasensitive Terahertz Imaging Sensors Based on the Strong Coupling of Surface Phonon Polariton and Graphene Surface Plasmon Polariton. IEEE Photonics Journal, 2018, 10, 1-9.	2.0	2
64	Giant and controllable Goos-Hächen shifts based on surface plasmon resonance with graphene-MoS ₂ heterostructure. Optical Materials Express, 2018, 8, 3036.	3.0	47
65	Few-layer Ti3C2Tx MXene: A promising surface plasmon resonance biosensing material to enhance the sensitivity. Sensors and Actuators B: Chemical, 2018, 277, 210-215.	7.8	163
66	Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus. Optics Express, 2018, 26, 5488.	3.4	44
67	Fano resonance in double waveguides with graphene for ultrasensitive biosensor. Optics Express, 2018, 26, 16884.	3.4	40
68	Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. Journal of Materials Chemistry C, 2018, 6, 9582-9593.	5.5	153
69	Terahertz Biochemical Sensor Based on Strong Coupling Between Waveguide Mode and Surface Plasmons of Double-Layer Graphene. IEEE Sensors Journal, 2018, 18, 7436-7441.	4.7	18
70	Improving the Performance of an SPR Biosensor Using Long-Range Surface Plasmon of Ga-Doped Zinc Oxide. Sensors, 2018, 18, 2098.	3.8	31
71	Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene. Optics Letters, 2018, 43, 4256.	3.3	73
72	Magneto-optical control of Imbert–Fedorov shifts of a light beam reflected from interfaced monolayer graphene. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2889.	2.1	9

#	Article	IF	CITATIONS
73	Broadband nonlinear optical resonance and all-optical switching of liquid phase exfoliated tungsten diselenide. Photonics Research, 2018, 6, 1040.	7.0	52
74	Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration. Plasmonics, 2017, 12, 1825-1831.	3.4	20
75	Absorption enhancement and total absorption in a graphene-waveguide hybrid structure. AIP Advances, 2017, 7, .	1.3	33
76	Nonlinear TE-polarized SPPs on a graphene cladded parallel plate waveguide. Journal of Applied Physics, 2017, 121, 103103.	2.5	14
77	Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sensors and Actuators B: Chemical, 2017, 249, 542-548.	7.8	322
78	Low-threshold optical bistability in a metasurface with graphene. Journal Physics D: Applied Physics, 2017, 50, 434003.	2.8	16
79	Sensitivity Improved SPR Biosensor Based on the MoS2/Graphene–Aluminum Hybrid Structure. Journal of Lightwave Technology, 2017, 35, 82-87.	4.6	165
80	Enhancing Photonic Spin Hall Effect in the Surface Plasmon Resonance Structure Covered by the Graphene–MoS2 Heterostructure. IEEE Photonics Journal, 2017, 9, 1-10.	2.0	11
81	Low threshold optical bistability in one-dimensional gratings based on graphene plasmonics. Optics Express, 2017, 25, 5972.	3.4	53
82	Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance. Photonics Research, 2017, 5, 467.	7.0	71
83	Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene. Photonics Research, 2017, 5, 536.	7.0	139
84	Ultrasensitive Terahertz Biosensors Based on Fano Resonance of a Graphene/Waveguide Hybrid Structure. Sensors, 2017, 17, 1924.	3.8	52
85	Tunable Optical Bistability in One-Dimensional Photonic Crystal with a Nonlinear Defect Coupled by Graphene Sheets. Advances in Condensed Matter Physics, 2017, 2017, 1-6.	1.1	2
86	Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes. Photonics Research, 2016, 4, 262.	7.0	93
87	Tunable Fano resonances of a graphene/waveguide hybrid structure at mid-infrared wavelength. Optics Express, 2016, 24, 4740.	3.4	35
88	Long-Range Surface Plasmon With Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor. IEEE Photonics Journal, 2016, 8, 1-9.	2.0	41
89	Manipulating the optical bistability at terahertz frequency in the Fabry-Perot cavity with graphene. Optics Express, 2015, 23, 31181.	3.4	32
90	Enhanced and controllable nonlinear effects in composite with aligned gold spheroid arrays. Journal of Nonlinear Optical Physics and Materials, 2015, 24, 1550013.	1.8	1

#	Article	IF	CITATIONS
91	Enhanced and Tunable Goos–Hächen Shift in a Cavity Containing Colloidal Ferrofluids. IEEE Photonics Journal, 2015, 7, 1-10.	2.0	16
92	Modulation instability in second harmonic generation in metamaterials with quadratic nonlinearity. Applied Physics B: Lasers and Optics, 2015, 121, 465-472.	2.2	6
93	Formation and Energy Exchange of Vector Dark Solitons in Fiber Lasers. IEEE Photonics Journal, 2015, 7, 1-9.	2.0	3
94	Superluminal Pulse Reflection From Graphene Covered Lossless Dielectric Slab. IEEE Journal of Quantum Electronics, 2015, 51, 1-6.	1.9	3
95	Low threshold optical bistability at terahertz frequencies with graphene surface plasmons. Scientific Reports, 2015, 5, 12271.	3.3	83
96	Tunable THz Angular/Frequency Filters in the Modified Kretschmann–Raether Configuration With the Insertion of Single Layer Graphene. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	12
97	Tunable optical bistability of dielectric/nonlinear graphene/dielectric heterostructures. Optics Express, 2015, 23, 6497.	3.4	50
98	Tunable Group Delay of the Optical Pulse Reflection From Fabry–Perot Cavity With the Insertion of Graphene Sheets. IEEE Photonics Journal, 2014, 6, 1-9.	2.0	17
99	Tunable optical bistability at the graphene-covered nonlinear interface. Applied Physics Letters, 2014, 104, .	3.3	72
100	Critical coupling with graphene-based hyperbolic metamaterials. Scientific Reports, 2014, 4, 5483.	3.3	158
101	SPATIAL XPM-PAIRED SOLITONS IN NONLINEAR METAMATERIALS. Journal of Nonlinear Optical Physics and Materials, 2013, 22, 1350009.	1.8	0
102	Goos–HÃ ¤ chen shifts of a light beam reflected from the interface of colloidal ferrofluids. Optik, 2013, 124, 5103-5106.	2.9	2
103	Electrically Tunable Goos–Hächen Shift of Light Beam Reflected From a Graphene-on-Dielectric Surface. IEEE Photonics Journal, 2013, 5, 6500108-6500108.	2.0	55
104	BOUNDED TRAVELING WAVE SOLUTIONS TO THE SHORT PULSE EQUATION. Journal of Nonlinear Optical Physics and Materials, 2012, 21, 1250049.	1.8	0
105	Omnidirectional and controllable switching behavior in a multiple photonic quantum well system with single-negative material heterostructure. Optik, 2012, 123, 1157-1160.	2.9	1
106	Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb. Journal of Applied Physics, 2011, 109, 053104.	2.5	78
107	Controllable Raman soliton self-frequency shift in nonlinear metamaterials. Physical Review A, 2011, 84, .	2.5	80
108	Extend the omnidirectional zero-average-index photonic band gap using the band edge formalism: Application to the metamaterial with Drude dispersion. Journal of Applied Physics, 2010, 108, .	2.5	11

#	Article	IF	CITATIONS
109	Independently tunable omnidirectional multichannel filters based on the fractal multilayers containing negative-index materials. Optics Letters, 2008, 33, 1255.	3.3	32
110	Enlargement of zero averaged refractive index gaps in the photonic heterostructures containing negative-index materials. Physical Review E, 2007, 76, 056604.	2.1	31
111	Omnidirectional and multiple-channeled high-quality filters of photonic heterostructures containing single-negative materials. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, A28.	1.5	38
112	Omnidirectional gaps of one-dimensional photonic crystals containing indefinite metamaterials. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 2033.	2.1	35
113	Graphene Based Waveguides. , 0, , .		3