Eulogio J Llorent-MartÃ-nez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2481162/publications.pdf

Version: 2024-02-01

134 papers 2,895 citations

30 h-index 243296 44 g-index

135 all docs

135 docs citations

135 times ranked 3609 citing authors

#	Article	IF	CITATIONS
1	Comprehensive approaches on chemical composition and biological properties of <i>Daphne pontica</i> L. extracts. Plant Biosystems, 2022, 156, 116-129.	0.8	2
2	Luminescent determination of propineb fungicide by using a carbon quantum dots-europium ions system. Talanta, 2022, 240, 123205.	2.9	7
3	Novel Perceptions on Chemical Profile and Biopharmaceutical Properties of Mentha spicata Extracts: Adding Missing Pieces to the Scientific Puzzle. Plants, 2022, 11, 233.	1.6	5
4	Characterization of the Phenolic Profile and Antioxidant Activity of Cathissa reverchonii (Lange) Speta. Molecules, 2022, 27, 1979.	1.7	2
5	Okra (Abelmoschus esculentus) in a refugee context in East Africa: Kitchen gardening helps with mineral provision. SN Applied Sciences, 2022, 4, 32.	1.5	2
6	Spectrophotometric determination of the antioxidant properties and characterization of the phenolic content by high-performance liquid chromatography–diode array detection–tandem mass spectrometry (HPLC–DAD–MS/MS) of <i>Berberis hispanica</i> Boiss. & mp;ÂReut. leaves. Analytical Letters, 2021, 54, 646-657.	1.0	7
7	Phytochemical profile and mineral content of Royal variety olive fruits. Influence of the ripening stage. Journal of Food Composition and Analysis, 2021, 95, 103671.	1.9	4
8	Phytochemical Composition and Antioxidant Activity of Portulaca oleracea: Influence of the Steaming Cooking Process. Foods, 2021, 10, 94.	1.9	25
9	Effect of Ripening on the Phenolic Composition and Mineral Content of Three Varieties of Olive Fruits. Foods, 2021, 10, 380.	1.9	12
10	Anticancer and biological properties of leaf and flower extracts of Echinacea purpurea (L.) Moench. Food Bioscience, 2021, 41, 101005.	2.0	16
11	Shedding Light into the Connection between Chemical Components and Biological Effects of Extracts from Epilobium hirsutum: Is It a Potent Source of Bioactive Agents from Natural Treasure?. Antioxidants, 2021, 10, 1389.	2.2	8
12	Phenolic Analysis and In Vitro Biological Activity of Red Wine, Pomace and Grape Seeds Oil Derived from Vitis vinifera L. cv. Montepulciano d'Abruzzo. Antioxidants, 2021, 10, 1704.	2.2	51
13	Protocols for Extraction of Pesticide Residues. Sustainable Agriculture Reviews, 2021, , 77-128.	0.6	O
14	Disclosing the bioactive metabolites involved in the in vitro anthelmintic effects of salt-tolerant plants through a combined approach using PVPP and HPLC-ESI-MSn. Scientific Reports, 2021, 11, 24303.	1.6	8
15	Analysis of neonicotinoid pesticides in the agri-food sector: a critical assessment of the state of the art. Applied Spectroscopy Reviews, 2020, 55, 613-646.	3.4	11
16	Determination of Ascorbic Acid in Pharmaceuticals and Biological Fluids by the Quenching of Europium Luminescence. Analytical Letters, 2020, 53, 683-692.	1.0	1
17	Automated on-line liquid-liquid extraction in a multisyringe flow injection analysis manifold for migration studies in food-contact materials: analysis of 4,4´-dihydroxybiphenyl. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37, 174-182.	1.1	1
18	Inhibition of α-amylase, α-glucosidase and pancreatic lipase by phenolic compounds of Rumex maderensis (Madeira sorrel). Influence of simulated gastrointestinal digestion on hyperglycaemia-related damage linked with aldose reductase activity and protein glycation. LWT - Food Science and Technology, 2020, 118, 108727.	2.5	42

#	Article	IF	CITATIONS
19	Exploring Chemical Profiles and Bioactivities of Harungana madagascariensis Lam. ex Poir. Leaves and Stem Bark Extracts: A New Source of Procyanidins. Analytical Letters, 2020, 53, 399-412.	1.0	7
20	Syzgium coriaceum Bosser & D. Guéhoâ€"An endemic plant potentiates conventional antibiotics, inhibits clinical enzymes and induces apoptosis in breast cancer cells. Industrial Crops and Products, 2020, 143, 111948.	2.5	12
21	Impact of different extraction solvents and techniques on the biological activities of Cirsium yildizianum (Asteraceae: Cynareae). Industrial Crops and Products, 2020, 144, 112033.	2.5	14
22	Comparative study of the phytochemical and mineral composition of fresh and cooked broccolini. Food Research International, 2020, 129, 108798.	2.9	11
23	Tamarindus indica L. Seed: Optimization of Maceration Extraction Recovery of Tannins. Food Analytical Methods, 2020, 13, 579-590.	1.3	8
24	Chemical characterization, antioxidant properties and enzyme inhibition of Rutabaga root's pulp and peel (Brassica napus L.). Arabian Journal of Chemistry, 2020, 13, 7078-7086.	2.3	23
25	Discrimination between nanocurcumin and free curcumin using graphene quantum dots as a selective fluorescence probe. Mikrochimica Acta, 2020, 187, 446.	2.5	15
26	<i>Viscum album</i> L. homogenizerâ€assisted and ultrasoundâ€assisted extracts as potential sources of bioactive compounds. Journal of Food Biochemistry, 2020, 44, e13377.	1.2	24
27	Study on Three <i>Sarcocapnos</i> Species as Potential Sources of Bioactive Compounds: Relation between Phenolic Content and Bioactivity by Multivariate Analysis. Journal of Analytical Methods in Chemistry, 2020, 2020, 1-16.	0.7	2
28	Phenolic profile and antioxidant activity of <i>Euonymus japonicus</i> Thunb Natural Product Research, 2020, , 1-5.	1.0	2
29	Chemical characterization, computational analysis and biological views on Daphne gnidioides Jaub. & Spach extracts: Can a new raw material be provided for biopharmaceutical applications?. Computational Biology and Chemistry, 2020, 87, 107273.	1.1	9
30	Phytochemical Analysis, Network Pharmacology and in Silico Investigations on Anacamptis pyramidalis Tuber Extracts. Molecules, 2020, 25, 2422.	1.7	14
31	Novel insights into the fruit and seed extracts of <i>Morinda morindoides</i> (Baker) Milneâ€Redh: HPLCâ€ESIâ€Qâ€TOFâ€MS profiling, antioxidant, and enzyme inhibitory propensities. Journal of Food Biochemistry, 2020, 44, e13169.	1.2	2
32	Sensitive fluorometric determination of quinclorac residues in rice. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37, 983-988.	1.1	6
33	Phenolic Profile, Toxicity, Enzyme Inhibition, In Silico Studies, and Antioxidant Properties of Cakile maritima Scop. (Brassicaceae) from Southern Portugal. Plants, 2020, 9, 142.	1.6	26
34	Contents of Metal(loid)s in a Traditional Ethiopian Flat Bread (Injera), Dietary Intake, and Health Risk Assessment in Addis Ababa, Ethiopia. Biological Trace Element Research, 2020, 198, 732-743.	1.9	12
35	Phenolic Profile, Antioxidant Activity, and Enzyme Inhibitory Properties of Limonium delicatulum (Girard) Kuntze and Limonium quesadense Erben. Journal of Chemistry, 2020, 2020, 1-10.	0.9	10
36	Automated fluorimetric sensor for the determination of zearalenone mycotoxin in maize and cereals feedstuff. Talanta, 2019, 191, 89-93.	2.9	36

#	Article	IF	Citations
37	Determination of Chlorpyrifos by a Multicommutated Photochemically Induced Fluorescence Optosensor. Analytical Letters, 2019, 52, 2634-2644.	1.0	3
38	Phytochemical, antihypertensive and nephroprotective study of aqueous extract of the stems and roots of Selaginella vogelii Mett (Selaginellaceae) in rats. South African Journal of Botany, 2019, 127, 256-264.	1.2	4
39	Multi-targeted potential of Pittosporum senacia Putt.: HPLC-ESI-MSn analysis, in silico docking, DNA protection, antimicrobial, enzyme inhibition, anti-cancer and apoptotic activity. Computational Biology and Chemistry, 2019, 83, 107114.	1.1	19
40	Phytochemical profile, mineral content, and antioxidant activity of Olea europaea L. cv. Cornezuelo table olives. Influence of in vitro simulated gastrointestinal digestion. Food Chemistry, 2019, 297, 124933.	4.2	51
41	Changes in the phenolic compositions of Elaeagnus umbellata and Sambucus lanceolata after in vitro gastrointestinal digestion and evaluation of their potential anti-diabetic properties. Food Research International, 2019, 122, 283-294.	2.9	38
42	Multidirectional insights on Chrysophyllum perpulchrum leaves and stem bark extracts: HPLC-ESI-MSn profiles, antioxidant, enzyme inhibitory, antimicrobial and cytotoxic properties. Industrial Crops and Products, 2019, 134, 33-42.	2.5	24
43	Sensitive Photochemically Induced Fluorescence Sensor for the Determination of Nitenpyram and Pyraclostrobin in Grapes and Wines. Food Analytical Methods, 2019, 12, 1152-1159.	1.3	11
44	Phenolic profile and antioxidant activity of Jasonia glutinosa herbal tea. Influence of simulated gastrointestinal in vitro digestion. Food Chemistry, 2019, 287, 258-264.	4.2	32
45	Automated Photochemically Induced Method for the Quantitation of the Neonicotinoid Thiacloprid in Lettuce. Molecules, 2019, 24, 4089.	1.7	6
46	Phenolic Characterization, Antioxidant Activity, and Enzyme Inhibitory Properties of Berberis thunbergii DC. Leaves: A Valuable Source of Phenolic Acids. Molecules, 2019, 24, 4171.	1.7	41
47	Selective luminescence determination of cysteine by using terbium-modified silver nanoparticles or terbium-modified graphene quantum dots. Mikrochimica Acta, 2019, 186, 781.	2.5	6
48	Characterization of the Phytochemical Profiles and Biological Activities of <i>Ajuga chamaepitys</i> subsp. <i>chia</i> var. <i>chia</i> and <i>Ajuga bombycina</i> by High-Performance Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry (HPLC–ESI–MS ⁿ). Analytical Letters, 2019, 52, 852-868.	1.0	8
49	Parentucellia latifolia subsp. latifolia: A potential source for loganin iridoids by HPLC-ESI-MSn technique. Journal of Pharmaceutical and Biomedical Analysis, 2019, 165, 374-380.	1.4	8
50	Determination of thiacloprid, thiamethoxam and imidacloprid in tea samples by quenching terbium luminescence. Luminescence, 2019, 34, 460-464.	1.5	7
51	Evaluation of Rubus grandifolius L. (wild blackberries) activities targeting management of type-2 diabetes and obesity using in vitro models. Food and Chemical Toxicology, 2019, 123, 443-452.	1.8	44
52	Pharmacological and polyphenolic profiles of Phyllanthus phillyreifolius var. commersonii M $\tilde{A}^{1/4}$ ll. Arg: An unexplored endemic species from Mauritius. Food Research International, 2019, 115, 425-438.	2.9	19
53	Chemical profile, antioxidant, and enzyme inhibitory properties of two <i>Scutellaria</i> species: <i>S. orientalis</i> L. and <i>S. salviifolia</i> Benth. Journal of Pharmacy and Pharmacology, 2019, 71, 270-280.	1.2	13
54	Polyphenols of Myrica faya inhibit key enzymes linked to type II diabetes and obesity and formation of advanced glycation end-products (in vitro): Potential role in the prevention of diabetic complications. Food Research International, 2019, 116, 1229-1238.	2.9	27

#	Article	IF	CITATIONS
55	Phytochemical characterization, <i>in vitro </i> and <i>in silico </i> approaches for three <i> Hypericum </i> species. New Journal of Chemistry, 2018, 42, 5204-5214.	1.4	65
56	Multicommutated Flow System for the Determination of Glyphosate Based on Its Quenching Effect on CdTe-Quantum Dots Fluorescence. Food Analytical Methods, 2018, 11, 1840-1848.	1.3	14
57	Direct determination of graphene quantum dots based on terbium-sensitized luminescence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 198, 177-181.	2.0	4
58	Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion. Mikrochimica Acta, 2018, 185, 204.	2.5	30
59	Phytochemical profile and antioxidant activity of caper berries (Capparis spinosa L.): Evaluation of the influence of the fermentation process. Food Chemistry, 2018, 250, 54-59.	4.2	43
60	Antioxidant polyphenols of Madeira sorrel (Rumex maderensis): How do they survive to in vitro simulated gastrointestinal digestion?. Food Chemistry, 2018, 259, 105-112.	4.2	38
61	Synthesis of hybrid magnetic carbon nanotubes – C18-modified nano SiO2 under supercritical carbon dioxide media and their analytical potential for solid-phase extraction of pesticides. Journal of Supercritical Fluids, 2018, 137, 66-73.	1.6	15
62	Chemical composition and biological activities of extracts from three Salvia species: S. blepharochlaena, S. euphratica var. leiocalycina, and S. verticillata subsp. amasiaca. Industrial Crops and Products, 2018, 111, 11-21.	2.5	89
63	Graphene quantum dots–terbium ions as novel sensitive and selective time-resolved luminescent probes. Analytical and Bioanalytical Chemistry, 2018, 410, 391-398.	1.9	13
64	Enhanced Quenching Effect of Neonicotinoid Pesticides on Time-Resolved Terbium Luminescence in Presence of Surfactants. Journal of Chemistry, 2018, 2018, 1-6.	0.9	10
65	Determination of the Phenolic Profile and Antioxidant Activity of Leaves and Fruits of Spanish <i>Quercus coccifera</i>). Journal of Chemistry, 2018, 2018, 1-9.	0.9	14
66	Integration of in vitro and in silico perspectives to explain chemical characterization, biological potential and anticancer effects of Hypericum salsugineum: A pharmacologically active source for functional drug formulations. PLoS ONE, 2018, 13, e0197815.	1.1	27
67	Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: Potential sources of bioactive compounds for the food industry. Food and Chemical Toxicology, 2017, 107, 609-619.	1.8	64
68	Phenolic profiles of Lauraceae plant species endemic to Laurisilva forest: A chemotaxonomic survey. Industrial Crops and Products, 2017, 107, 1-12.	2.5	17
69	Evaluation of the inorganic content of six underused wild berries from Portugal: Potential new sources of essential minerals. Journal of Food Composition and Analysis, 2017, 59, 153-160.	1.9	6
70	Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Research International, 2017, 100, 404-410.	2.9	62
71	Rosa rubiginosa and Fraxinus oxycarpa herbal teas: characterization of phytochemical profiles by liquid chromatography-mass spectrometry, and evaluation of the antioxidant activity. New Journal of Chemistry, 2017, 41, 7681-7688.	1.4	25
72	Traditionally Used Lathyrus Species: Phytochemical Composition, Antioxidant Activity, Enzyme Inhibitory Properties, Cytotoxic Effects, and in silico Studies of L. czeczottianus and L. nissolia. Frontiers in Pharmacology, 2017, 8, 83.	1.6	55

#	Article	IF	CITATIONS
73	Decoration of multi-walled carbon nanotubes with metal nanoparticles in supercritical carbon dioxide medium as a novel approach for the modification of screen-printed electrodes. Talanta, 2016, 161, 775-779.	2.9	22
74	Lathyrus aureus and Lathyrus pratensis: characterization of phytochemical profiles by liquid chromatography-mass spectrometry, and evaluation of their enzyme inhibitory and antioxidant activities. RSC Advances, 2016, 6, 88996-89006.	1.7	35
75	Ulex europaeus: from noxious weed to source of valuable isoflavones and flavanones. Industrial Crops and Products, 2016, 90, 9-27.	2.5	25
76	HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Industrial Crops and Products, 2015, 69, 80-90.	2.5	82
77	Analysis of phenolic compounds in leaves from endemic trees from Madeira Island. A contribution to the chemotaxonomy of Laurisilva forest species. Industrial Crops and Products, 2015, 64, 135-151.	2.5	32
78	Analysis of Agroalimentary and Environmental Contaminants Using Flow-Through Chemical Optosensors. Applied Spectroscopy Reviews, 2015, 50, 527-556.	3.4	4
79	A new approach for automated liquid–liquid extraction in a sequential injection manifold. Analytical and Bioanalytical Chemistry, 2015, 407, 521-528.	1.9	9
80	Multi-commutated fluorometric optosensor for the determination of citrinin in rice and red yeast rice supplements. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1744-1750.	1.1	19
81	Quantitation of Metals During the Extraction of Virgin Olive Oil from Olives Using ICPâ€MS after Microwaveâ€assisted Acid Digestion. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1823-1830.	0.8	29
82	Identification of lipidic binding media in plasterwork decorations from the Alhambra using GC–MS and chemometrics: Influence of pigments and aging. Microchemical Journal, 2014, 115, 11-18.	2.3	14
83	Quantitation of Selected Polyphenols in Plant-Based Food Supplements by Liquid Chromatography–lon Trap Mass Spectrometry. Food Analytical Methods, 2014, 7, 2177-2183.	1.3	5
84	Determination of vitamin C in foods: Current state of method validation. Journal of Chromatography A, 2014, 1369, 2-17.	1.8	65
85	<i>Myrica faya</i> : A New Source of Antioxidant Phytochemicals. Journal of Agricultural and Food Chemistry, 2014, 62, 9722-9735.	2.4	50
86	Determination of Carbendazim in Food Products Using a Sequential Injection Analysis Optosensor. Food Analytical Methods, 2013, 6, 1278-1283.	1.3	10
87	Sequential Injection Analysis of Ciclopirox Olamine Using Lanthanide-Sensitized Luminescence Detection. Analytical Letters, 2013, 46, 1816-1825.	1.0	3
88	Determination of ketoprofen based on its quenching effect in the fluorescence of quantum dots. Journal of Food and Drug Analysis, 2013, 21, 426-431.	0.9	13
89	Quantitation of hydroxytyrosol in food products using a sequential injection analysis fluorescence optosensor. Journal of Food Composition and Analysis, 2013, 32, 99-104.	1.9	4
90	Quantitation of ochratoxin a in cereals and feedstuff using sequential injection analysis with luminescence detection. Food Control, 2013, 30, 379-385.	2.8	10

#	Article	IF	Citations
91	Separation of a binary mixture of pesticides in fruits using a flow-through optosensor. Talanta, 2013, 115, 462-467.	2.9	14
92	Application of quantum dots in clinical and alimentary fields using multicommutated flow injection analysis. Talanta, 2013, 109, 203-208.	2.9	12
93	Study of the quenching effect of quinolones over CdTe-quantum dots using sequential injection analysis and multicommutation. Journal of Pharmaceutical and Biomedical Analysis, 2013, 80, 147-154.	1.4	7
94	A novel multi-commutated method for the determination of hydroxytyrosol in enriched foods using mercaptopropionic acid-capped CdTe quantum dots. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 1485-1492.	1,1	4
95	Characterization and comparison of the chemical composition of exotic superfoods. Microchemical Journal, 2013, 110, 444-451.	2.3	63
96	Rapid Fluorimetric Quantitation of Ibandronate by Coupling Quantum Dots and Multicommutated Flow Injection Analysis. Current Pharmaceutical Analysis, 2013, 9, 237-243.	0.3	4
97	Fluorimetric Determination of Ketorolac in Urine by Stopped-Flow Sequential Injection Analysis. Spectroscopy Letters, 2012, 45, 219-224.	0.5	2
98	Fluorimetric determination of thiabendazole residues in mushrooms using sequential injection analysis. Talanta, 2012, 96, 190-194.	2.9	27
99	Automated optosensor for the determination of carbaryl residues in vegetable edible oils and table olive extracts. Journal of Food Composition and Analysis, 2012, 26, 66-71.	1.9	17
100	Analysis of 20 trace and minor elements in soy and dairy yogurts by ICP-MS. Microchemical Journal, 2012, 102, 23-27.	2.3	66
101	Contribution to Automation for Determination of Drugs Based on Flow-Through Optosensors. Applied Spectroscopy Reviews, 2011, 46, 339-367.	3.4	7
102	Reagentless Photochemically-Induced Fluorimetric Determination of Fipronil by Sequential-Injection Analysis. Analytical Letters, 2011, 44, 2606-2616.	1.0	8
103	Lanthanide-Sensitized Luminescence as a Promising Tool in Clinical Analysis. Applied Spectroscopy Reviews, 2011, 46, 561-580.	3.4	34
104	Analysis of the legislated metals in different categories of olive and olive-pomace oils. Food Control, 2011, 22, 221-225.	2.8	35
105	Photo-Chemically Induced Fluorescence Determination of Tigecycline by a Stopped-Flow Multicommutated Flow-Analysis Assembly. Analytical Letters, 2011, 44, 127-136.	1.0	12
106	Trends in flow-based analytical methods applied to pesticide detection: A review. Analytica Chimica Acta, 2011, 684, 30-39.	2.6	90
107	Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain. Food Chemistry, 2011, 127, 1257-1262.	4.2	134
108	Lanthanide-Sensitized Luminescence as a Promising Tool in Clinical Analysis. Applied Spectroscopy Reviews, 2011, 46, 561-580.	3.4	25

#	Article	IF	CITATIONS
109	Multicommutation in Flow Systems: A Useful Tool for Pharmaceutical and Clinical Analysis. Current Pharmaceutical Analysis, 2010, 6, 53-65.	0.3	31
110	Recent progress of flow-through optosensing in clinical and pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 250-261.	1.4	21
111	Direct Determination of Cefadroxil by Chemiluminescence Using a Multicommutated Flow-Through Sensor. Spectroscopy Letters, 2010, 43, 60-67.	0.5	8
112	Monitoring of Sulfonamides by a Multicommutation Flow-Analysis Assembly: Use of Quenching Effect on Terbium Luminescence. Analytical Letters, 2010, 43, 2283-2295.	1.0	8
113	Development of an automated chemiluminescence flow-through sensor for the determination of 5-aminosalicylic acid in pharmaceuticals: a comparative study between sequential and multicommutated flow techniques. Analytical and Bioanalytical Chemistry, 2009, 394, 845-853.	1.9	25
114	Development of a rapid and automatic optosensor for the determination of cromolyn in biological samples. Talanta, 2009, 79, 627-632.	2.9	10
115	Implementation of terbium-sensitized luminescence in sequential-injection analysis for automatic analysis of orbifloxacin. Analytical and Bioanalytical Chemistry, 2008, 392, 1397-1403.	1.9	13
116	Sequential injection multi-optosensor based on a dual-luminescence system using two sensing zones: application to multivitamin determination. Mikrochimica Acta, 2008, 162, 199-204.	2.5	16
117	Fast Determination of Salicylic Acid in Pharmaceuticals by Using a Terbium-Sensitized Luminescent SIA Optosensor. Journal of Pharmaceutical Sciences, 2008, 97, 791-797.	1.6	8
118	Multicommuted fluorescence based optosensor for the screening of bitertanol residues in banana samples. Food Chemistry, 2007, 102, 676-682.	4.2	20
119	Development of a multicommuted flow-through optosensor for the determination of a ternary pharmaceutical mixture. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 515-521.	1.4	18
120	Fluorimetric SIA optosensing in pharmaceutical analysis: Determination of paracetamol. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45, 318-321.	1.4	33
121	Fluorescence optosensing implemented with sequential injection analysis: a novel strategy for the determination of labetalol. Analytical and Bioanalytical Chemistry, 2007, 387, 2065-2069.	1.9	15
122	Multiâ€commutated Flowâ€through Multiâ€optosensing: A Tool for Environmental Analysis. Spectroscopy Letters, 2006, 39, 619-629.	0.5	16
123	The potential of combining solid-phase optosensing and multicommutation principles for routine analyses of pharmaceuticals. Talanta, 2006, 68, 1482-1488.	2.9	10
124	A multicommuted fluorescence-based sensing system for simultaneous determination of Vitamins B2 and B6. Analytica Chimica Acta, 2006, 555, 128-133.	2.6	50
125	Determination of thiabendazole residues in citrus fruits using a Multicommuted fluorescence-based optosensor. Analytica Chimica Acta, 2006, 557, 95-100.	2.6	34
126	Chemiluminescence optosensing implemented with multicommutation: Determination of salicylic acid. Analytica Chimica Acta, 2006, 580, 149-154.	2.6	21

#	Article	IF	CITATIONS
127	Multicommuted optosensor for the determination of pipemidic acid in biological fluids. Analytical Biochemistry, 2005, 347, 330-332.	1.1	22
128	Implementation of multicommutation principle with flow-through multioptosensors. Analytica Chimica Acta, 2005, 545, 113-118.	2.6	27
129	Multicommuted flow-through fluorescence optosensor for determination of furosemide and triamterene. Analytical and Bioanalytical Chemistry, 2005, 383, 797-803.	1.9	21
130	Solid-phase ultraviolet sensing system for determination of methylxanthines. Analytical and Bioanalytical Chemistry, 2005, 382, 158-163.	1.9	17
131	Flow-Through Fluorescence-Based Optosensor with On-Line Solid-Phase Separation for the Simultaneous Determination of a Ternary Pesticide Mixture. Journal of AOAC INTERNATIONAL, 2005, 88, 860-865.	0.7	16
132	Flow-through fluorescence-based optosensor with on-line solid-phase separation for the simultaneous determination of a ternary pesticide mixture. Journal of AOAC INTERNATIONAL, 2005, 88, 860-5.	0.7	8
133	Continuous-flow separation and pre-concentration coupled on-line to solid-surface fluorescence spectroscopy for the simultaneous determination of o -phenylphenol and thiabendazole. Analytical and Bioanalytical Chemistry, 2004, 378, 429-437.	1.9	16
134	Multiwavelength fluorescence based optosensor for simultaneous determination of fuberidazole, carbaryl and benomyl. Talanta, 2004, 64, 742-749.	2.9	30