Annalisa Cherchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2480390/publications.pdf

Version: 2024-02-01

43 papers 1,708 citations

346980 22 h-index 39 g-index

51 all docs

51 docs citations

51 times ranked

2670 citing authors

#	Article	IF	Citations
1	CMIP6 Simulations With the CMCC Earth System Model (CMCCâ€ESM2). Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	75
2	The Extreme Positive Indian Ocean Dipole of 2019 and Associated Indian Summer Monsoon Rainfall Response. Geophysical Research Letters, 2021, 48, e2020GL091497.	1.5	64
3	South Asian summer monsoon and subtropical deserts. , 2021, , 299-318.		O
4	Indian Ocean Dipole influence on Indian summer monsoon and ENSO: A review., 2021,, 157-182.		12
5	An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations. Ocean Modelling, 2020, 145, 101503.	1.0	20
6	Quantification of the Arctic Sea Iceâ€Driven Atmospheric Circulation Variability in Coordinated Large Ensemble Simulations. Geophysical Research Letters, 2020, 47, e2019GL085397.	1.5	29
7	Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors. Earth System Dynamics, 2020, 11, 161-181.	2.7	29
8	The typhoon-induced drying of the Maritime Continent. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3983-3988.	3.3	15
9	Advances in understanding largeâ€scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 2020, 1472, 49-75.	1.8	226
10	Global Mean Climate and Main Patterns of Variability in the CMCC M2 Coupled Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 185-209.	1.3	202
11	Connecting AMOC changes. Nature Climate Change, 2019, 9, 729-730.	8.1	3
12	<scp>ENSO</scp> and the recent warming of the Indian Ocean. International Journal of Climatology, 2018, 38, 203-214.	1.5	23
13	Remote SST forcing on Indian summer monsoon extreme years in AGCM experiments. International Journal of Climatology, 2018, 38, e160.	1.5	3
14	The Response of Subtropical Highs to Climate Change. Current Climate Change Reports, 2018, 4, 371-382.	2.8	51
15	EVALUATION OF AMIP-TYPE ATMOSPHERIC FIELDS AS FORCING FOR. Annals of Geophysics, 2018, 61, .	0.5	O
16	The unusual wet summer (July) of 2014 in Southern Europe. Atmospheric Research, 2017, 189, 61-68.	1.8	7
17	Twenty-first century projected summer mean climate in the Mediterranean interpreted through the monsoon-desert mechanism. Climate Dynamics, 2016, 47, 2361-2371.	1.7	12
18	Moisture variability over the Indo-Pacific region and its influence on the Indian summer monsoon rainfall. Climate Dynamics, 2016, 46, 949-965.	1.7	37

#	Article	IF	Citations
19	Extreme events in the La Plata basin: a retrospective analysis of what we have learned during CLARIS-LPB project. Climate Research, 2016, 68, 95-116.	0.4	36
20	A coupled model study on the Atlantic Meridional Overturning Circulation under extreme atmospheric CO2 conditions. Annals of Geophysics, 2016, 59, .	0.5	0
21	Indian monsoon and the elevatedâ€heatâ€pump mechanism in a coupled aerosolâ€climate model. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8712-8723.	1.2	26
22	Impact of global SST gradients on the Mediterranean runoff changes across the Plioâ€Pleistocene transition. Paleoceanography, 2015, 30, 751-767.	3.0	6
23	Prediction of Indian Summer Monsoon Onset Using Dynamical Subseasonal Forecasts: Effects of Realistic Initialization of the Atmosphere. Monthly Weather Review, 2015, 143, 778-793.	0.5	40
24	Precipitation extremes over La Plata Basin – Review and new results from observations and climate simulations. Journal of Hydrology, 2015, 523, 211-230.	2.3	75
25	Modeling Northern Hemisphere ice-sheet distribution during MIS 5 and MIS 7 glacial inceptions. Climate of the Past, 2014, 10, 269-291.	1.3	12
26	Impact of Orbital Parameters and Greenhouse Gas on the Climate of MIS 7 and MIS 5 Glacial Inceptions. Journal of Climate, 2014, 27, 8918-8933.	1.2	7
27	South Asian Summer Monsoon and the Eastern Mediterranean Climate: The Monsoon–Desert Mechanism in CMIP5 Simulations. Journal of Climate, 2014, 27, 6877-6903.	1.2	43
28	La Plata basin precipitation variability in spring: role of remote SST forcing as simulated by GCM experiments. Climate Dynamics, 2014, 42, 219-236.	1.7	9
29	Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Scientific Reports, 2014, 4, 7211.	1.6	64
30	Influence of ENSO and of the Indian Ocean Dipole on the Indian summer monsoon variability. Climate Dynamics, 2013, 41, 81-103.	1.7	94
31	Testing for the Possible Influence of Unknown Climate Forcings upon Global Temperature Increases from 1950 to 2000. Journal of Climate, 2012, 25, 7163-7172.	1.2	6
32	Tropical Pacific–North Pacific teleconnection in a coupled GCM: remote and local effects. International Journal of Climatology, 2012, 32, 1640-1653.	1.5	6
33	ENSO and Its Effects on the Atmospheric Heating Processes. Journal of the Meteorological Society of Japan, 2012, 90, 35-57.	0.7	3
34	Effects of increased CO2 levels on monsoons. Climate Dynamics, 2011, 37, 83-101.	1.7	89
35	Climate Sensitivity to Changes in Ocean Heat Transport. Journal of Climate, 2011, 24, 5015-5030.	1.2	9
36	Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models. Climate Dynamics, 2010, 35, 1461-1475.	1.7	12

#	Article	IF	CITATION
37	The INGV–CMCC Seasonal Prediction System: Improved Ocean Initial Conditions. Monthly Weather Review, 2010, 138, 2930-2952.	0.5	43
38	The CLIVAR C20C project: which components of the Asian–Australian monsoon circulation variations are forced and reproducible?. Climate Dynamics, 2009, 33, 1051-1068.	1.7	107
39	Impact of extreme CO2 levels on tropical climate: a CGCM study. Climate Dynamics, 2008, 31, 743-758.	1.7	18
40	The Influence of Tropical Indian Ocean SST on the Indian Summer Monsoon. Journal of Climate, 2007, 20, 3083-3105.	1.2	65
41	Heatwaves in Europe: areas of homogeneous variability and links with the regional to large-scale atmospheric and SSTs anomalies. Climate Dynamics, 2007, 30, 77-98.	1.7	56
42	Sensitivity of the Asian summer monsoon to the horizontal resolution: differences between AMIP-type and coupled model experiments. Climate Dynamics, 2006, 28, 273-290.	1.7	29
43	Reproducibility and predictability of the Asian summer monsoon in the ECHAM4-GCM. Climate Dynamics, 2003, 20, 365-379.	1.7	42