
Pabitra Nath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2480314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection and quantification of phosphate in water and soil using a smartphone. Microchemical Journal, 2022, 172, 106949.	4.5	14
2	Programmable illumination smartphone microscopy (PISM): A multimodal imaging platform for biomedical applications. Optics and Lasers in Engineering, 2022, 151, 106931.	3.8	7
3	Carbon Nanodot–Neutral Red-Based Photometric and Fluorescence Sensing for Trace Detection of Nitrite in Water and Soil Using Smartphone. ACS Applied Nano Materials, 2022, 5, 3265-3274.	5.0	11
4	An affordable, handheld multimodal microscopic system with onboard cell morphology and counting features on a mobile device. Analyst, The, 2022, 147, 2859-2869.	3.5	6
5	A smartphone-based photometric and fluorescence sensing for accurate estimation of zinc ion in water. Sensors and Actuators A: Physical, 2022, 341, 113586.	4.1	3
6	Design, fabrication and testing of 3D printed smartphone-based device for collection of intrinsic fluorescence from human cervix. Scientific Reports, 2022, 12, .	3.3	2
7	Wide-field multi-modal microscopic imaging using smartphone. Optics and Lasers in Engineering, 2021, 137, 106343.	3.8	14
8	Dual Mode Smartphone Based Sensing for Accurate Estimation of Sulphate and Chloride in Water. IEEE Sensors Journal, 2021, 21, 19314-19321.	4.7	4
9	Turbidimetric analysis of growth kinetics of bacteria in the laboratory environment using smartphone. Journal of Biophotonics, 2020, 13, e201960159.	2.3	16
10	Smartphone-Based Spectrometric Analyzer for Accurate Estimation of pH Value in Soil. IEEE Sensors Journal, 2020, , 1-1.	4.7	5
11	Estimation of trace-mercury concentration in water using a smartphone. Measurement: Journal of the International Measurement Confederation, 2020, 154, 107507.	5.0	26
12	Blu-ray DVD as SERS substrate for reliable detection of albumin, creatinine and urea in urine. Sensors and Actuators B: Chemical, 2019, 285, 108-115.	7.8	33
13	Design of a Smartphone Platform Compact Optical System Operational Both in Visible and Near Infrared Spectral Regime. IEEE Sensors Journal, 2018, 18, 4933-4939.	4.7	25
14	Gold-coated electrospun PVA nanofibers as SERS substrate for detection of pesticides. Sensors and Actuators B: Chemical, 2018, 273, 710-717.	7.8	65
15	Blu-ray DVD as SERS substrate for reliable detection and quantification of urea. , 2018, , .		1
16	Accurate estimation of mercury level concentration in water using smartphone. , 2018, , .		0
17	Protein, enzyme and carbohydrate quantification using smartphone through colorimetric digitization technique. Journal of Biophotonics, 2017, 10, 623-633.	2.3	37
18	A naturally occurring diatom frustule as a SERS substrate for the detection and quantification of chemicals. Journal Physics D: Applied Physics, 2017, 50, 175103.	2.8	22

Pabitra Nath

#	Article	IF	CITATIONS
19	Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water. Analytical Chemistry, 2017, 89, 767-775.	6.5	99
20	A fully automated colorimetric sensing device using smartphone for biomolecular quantification. , 2017, , .		0
21	SERS on paper: an extremely low cost technique to measure Raman signal. Journal Physics D: Applied Physics, 2017, 50, 485601.	2.8	24
22	Water salinity detection using a smartphone. Sensors and Actuators B: Chemical, 2017, 239, 1042-1050.	7.8	74
23	Diagonally Aligned Squared Metal Nano-pillar with Increased Hotspot Density as a Highly Reproducible SERS Substrate. Plasmonics, 2017, 12, 1353-1358.	3.4	7
24	Smartphone based LSPR sensing platform for bio-conjugation detection and quantification. RSC Advances, 2016, 6, 21871-21880.	3.6	92
25	Periodically Varying Height in Metal Nano-pillars for Enhanced Generation of Localized Surface Plasmon Field. Plasmonics, 2015, 10, 1367-1372.	3.4	12
26	Smartphone-based platform optical setup measuring π/256 optical phase difference in an interference process. Applied Optics, 2015, 54, 5739.	2.1	13
27	Surface Plasmon Resonance-Based Protein Bio-Sensing Using a Kretschmann Configured Double Prism Arrangement. IEEE Sensors Journal, 2015, 15, 6791-6796.	4.7	25
28	Smartphone Based Platform for Colorimetric Sensing of Dyes. Springer Proceedings in Physics, 2015, , 541-546.	0.2	0
29	Ground and river water quality monitoring using a smartphone-based pH sensor. AIP Advances, 2015, 5,	1.3	54
30	Dye-Assisted pH Sensing Using a Smartphone. IEEE Photonics Technology Letters, 2015, 27, 2363-2366.	2.5	32
31	Evanescent Wave Coupled Spectroscopic Sensing Using Smartphone. IEEE Photonics Technology Letters, 2014, 26, 568-570.	2.5	52
32	Fiber-Optic Volumetric Sensor Based on Beer-Lambert Principle. IEEE Sensors Journal, 2013, 13, 3345-3346.	4.7	8
33	Label-free biodetection using a smartphone. Lab on A Chip, 2013, 13, 2124.	6.0	281
34	All Fiber-Optic Sensor for Monitoring Pressure Fluctuations in ON/OFF State. IEEE Sensors Journal, 2013, 13, 1148-1152.	4.7	10
35	Fiber-optic liquid level sensor based on coupling optical path length variation. Review of Scientific Instruments, 2012, 83, 055006.	1.3	5
36	Single-mode fibre coupler as refractometer sensor. Pramana - Journal of Physics, 2012, 79, 1525-1532.	1.8	2

Pabitra Nath

#	Article	IF	CITATIONS
37	Non-intrusive refractometer sensor. Pramana - Journal of Physics, 2010, 74, 661-668.	1.8	4
38	Enhanced sensitive fiberâ€optic sensor with double pass evanescent field absorption. Microwave and Optical Technology Letters, 2009, 51, 3004-3006.	1.4	12
39	Fiber-Optic pH Sensor Based on SPR of Silver Nanostructured Film. , 2009, , .		8
40	All fiberâ€optic sensor for liquid level measurement. Microwave and Optical Technology Letters, 2008, 50, 1982-1984.	1.4	33
41	Lightwave splitting in two dimensional photonic crystal analogue of coupler. Optics Communications, 2008, 281, 4784-4787.	2.1	2
42	Cobalt chloride doped polymer film for relative humidity measurement. , 2007, , .		1