Rongjin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2480176/publications.pdf

Version: 2024-02-01

109321 79698 5,871 76 35 73 citations h-index g-index papers 79 79 79 9018 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Few-layered organic single-crystalline heterojunctions for high-performance phototransistors. Nano Research, 2022, 15, 2667-2673.	10.4	12
2	The prospects of organic semiconductor single crystals for spintronic applications. Journal of Materials Chemistry C, 2022, 10, 2507-2515.	5.5	14
3	Soft template-assisted self-assembly: a general strategy toward two-dimensional molecular crystals for high-performance organic field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 2575-2580.	5.5	5
4	Negative Phototransistors with Ultrahigh Sensitivity and Weak‣ight Detection Based on 1D/2D Molecular Crystal p–n Heterojunctions and their Application in Light Encoders. Advanced Materials, 2022, 34, e2201364.	21.0	26
5	Highly Efficient Contact Doping for High-Performance Organic UV-Sensitive Phototransistors. Crystals, 2022, 12, 651.	2.2	5
6	Ultra-thin two-dimensional molecular crystals grown on a liquid surface for high-performance phototransistors. Chemical Communications, 2021, 57, 2669-2672.	4.1	11
7	High-yield and sustainable synthesis of quinoidal compounds assisted by keto–enol tautomerism. Chemical Science, 2021, 12, 9366-9371.	7.4	10
8	Few-layered two-dimensional molecular crystals for organic artificial visual memories with record-high photoresponse. Journal of Materials Chemistry C, 2021, 9, 8834-8841.	5.5	10
9	2D molecular crystal templated organic p–n heterojunctions for high-performance ambipolar organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 5758-5764.	5.5	12
10	Verticalâ€organicâ€nanocrystalâ€arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat, 2021, 2, 99-108.	10.7	73
11	p-n heterojunctions composed of two-dimensional molecular crystals for high-performance ambipolar organic field-effect transistors. APL Materials, 2021, 9, 051108.	5.1	8
12	Bandgap Engineering of an Aryl-Fused Tetrathianaphthalene for Visible-Blind Organic Field-Effect Transistors. Frontiers in Chemistry, 2021, 9, 698246.	3.6	2
13	Spin injection and transport in single-crystalline organic spin valves based on TIPS-pentacene. Science China Materials, 2021, 64, 2795-2804.	6.3	5
14	Isomeric Dibenzoheptazethrenes for Airâ€Stable Organic Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2021, 60, 16230-16236.	13.8	42
15	Isomeric Dibenzoheptazethrenes for Airâ€Stable Organic Fieldâ€Effect Transistors. Angewandte Chemie, 2021, 133, 16366-16372.	2.0	14
16	Two-dimensional molecular crystals: a review. Scientia Sinica Chimica, 2021, 51, 21-40.	0.4	1
17	Highly adhesive, washable and stretchable on-skin electrodes based on polydopamine and silk fibroin for ambulatory electrocardiography sensing. Journal of Materials Chemistry C, 2020, 8, 12257-12264.	5.5	21
18	Highly efficient modulation of the electronic properties of organic semiconductors by surface doping with 2D molecular crystals. Science China Chemistry, 2020, 63, 973-979.	8.2	3

#	Article	IF	CITATIONS
19	Solution-Processed, Large-Area, Two-Dimensional Crystals of Organic Semiconductors for Field-Effect Transistors and Phototransistors. ACS Central Science, 2020, 6, 636-652.	11.3	53
20	Continuous and highly ordered organic semiconductor thin films via dip-coating: the critical role of meniscus angle. Science China Materials, 2020, 63, 1257-1264.	6.3	10
21	Layerâ€Defining Strategy to Grow Twoâ€Dimensional Molecular Crystals on a Liquid Surface down to the Monolayer Limit. Angewandte Chemie - International Edition, 2019, 58, 16082-16086.	13.8	53
22	2D Molecular Crystal Bilayer p–n Junctions: A General Route toward Highâ€Performance and Wellâ€Balanced Ambipolar Organic Fieldâ€Effect Transistors. Small, 2019, 15, e1902187.	10.0	29
23	A "Phase Separation―Molecular Design Strategy Towards Largeâ€Area 2D Molecular Crystals. Advanced Materials, 2019, 31, e1901437.	21.0	44
24	Layerâ€Defining Strategy to Grow Twoâ€Dimensional Molecular Crystals on a Liquid Surface down to the Monolayer Limit. Angewandte Chemie, 2019, 131, 16228-16232.	2.0	6
25	InnenrÃ1⁄4cktitelbild: Layerâ€Defining Strategy to Grow Twoâ€Dimensional Molecular Crystals on a Liquid Surface down to the Monolayer Limit (Angew. Chem. 45/2019). Angewandte Chemie, 2019, 131, 16479-16479.	2.0	0
26	Organic Single Crystals: A "Phase Separation―Molecular Design Strategy Towards Largeâ€Area 2D Molecular Crystals (Adv. Mater. 35/2019). Advanced Materials, 2019, 31, 1970251.	21.0	2
27	Thermal-assisted self-assembly: a self-adaptive strategy towards large-area uniaxial organic single-crystalline microribbon arrays. Nanoscale, 2019, 11, 12781-12787.	5. 6	15
28	Reversible Modification of Nitrogen-Doped Graphene Based on Se–N Dynamic Covalent Bonds for Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24360-24366.	8.0	13
29	Organic Cocrystals: New Strategy for Molecular Collaborative Innovation. Topics in Current Chemistry Collections, 2019, , 229-262.	0.5	0
30	Nâ€Type 2D Organic Single Crystals for Highâ€Performance Organic Fieldâ€Effect Transistors and Nearâ€Infrared Phototransistors. Advanced Materials, 2018, 30, e1706260.	21.0	145
31	Space-Confined Strategy toward Large-Area Two-Dimensional Single Crystals of Molecular Materials. Journal of the American Chemical Society, 2018, 140, 5339-5342.	13.7	132
32	Organic Single Crystals: N-Type 2D Organic Single Crystals for High-Performance Organic Field-Effect Transistors and Near-Infrared Phototransistors (Adv. Mater. 16/2018). Advanced Materials, 2018, 30, 1870114.	21.0	5
33	Impact of C–H···X (X = F, N) and π–π Interactions on Tuning the Degree of Charge Transfer in F ₆ TNAP-Based Organic Binary Compound Single Crystals. Crystal Growth and Design, 2018, 18, 1776-1785.	3.0	40
34	Organic Optoelectronics: 2D Organic Materials for Optoelectronic Applications (Adv. Mater. 2/2018). Advanced Materials, 2018, 30, 1870012.	21.0	11
35	A new compound between tetracene and rubrene to improve the weakness. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 131-135.	3.9	0
36	2D Organic Materials for Optoelectronic Applications. Advanced Materials, 2018, 30, 1702415.	21.0	266

#	Article	IF	Citations
37	Unidirectional and crystalline organic semiconductor microwire arrays by solvent vapor annealing with PMMA as the assisting layer. Journal of Materials Chemistry C, 2018, 6, 12479-12483.	5.5	15
38	Sonication-assisted liquid-phase exfoliated $\hat{l}\pm$ -GeTe: a two-dimensional material with high Fe $<$ sup $>$ 3+ $<$ /sup $>$ sensitivity. Nanoscale, 2018, 10, 15989-15997.	5 . 6	48
39	Two-Dimensional High-Quality Monolayered Triangular WS ₂ Flakes for Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 22435-22444.	8.0	77
40	A novel angularly fused bistetracene: facile synthesis, crystal packing and single-crystal field effect transistors. Journal of Materials Chemistry C, 2017, 5, 1308-1312.	5 . 5	27
41	Fieldâ€Effect Devices: Molecular Crystal Engineering: Tuning Organic Semiconductor from pâ€type to nâ€type by Adjusting Their Substitutional Symmetry (Adv. Mater. 10/2017). Advanced Materials, 2017, 29, .	21.0	1
42	Intermolecular Chargeâ€Transfer Interactions Facilitate Twoâ€Photon Absorption in Styrylpyridine–Tetracyanobenzene Cocrystals. Angewandte Chemie - International Edition, 2017, 56, 7831-7835.	13.8	146
43	Intermolecular Chargeâ€Transfer Interactions Facilitate Twoâ€Photon Absorption in Styrylpyridine–Tetracyanobenzene Cocrystals. Angewandte Chemie, 2017, 129, 7939-7943.	2.0	32
44	Molecular Crystal Engineering: Tuning Organic Semiconductor from pâ€ŧype to nâ€ŧype by Adjusting Their Substitutional Symmetry. Advanced Materials, 2017, 29, 1605053.	21.0	64
45	A bowl-shaped sumanene derivative with dense convex–concave columnar packing for high-performance organic field-effect transistors. Chemical Communications, 2017, 53, 11407-11409.	4.1	31
46	Random Access Memory: Organic Ferroelectricâ€Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Halfâ€Selection Problem (Adv. Mater. 34/2017). Advanced Materials, 2017, 29, .	21.0	5
47	Organic Ferroelectricâ€Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Halfâ€5election Problem. Advanced Materials, 2017, 29, 1701907.	21.0	46
48	Enhanced stability of a rubrene analogue with a brickwork packing motif. Journal of Materials Chemistry C, 2017, 5, 8376-8379.	5 . 5	4
49	Organic Memory Devices: 2D Mica Crystal as Electret in Organic Fieldâ€Effect Transistors for Multistate Memory (Adv. Mater. 19/2016). Advanced Materials, 2016, 28, 3792-3792.	21.0	2
50	Organic Cocrystals: New Strategy for Molecular Collaborative Innovation. Topics in Current Chemistry, 2016, 374, 83.	5.8	52
51	Mass Production of Nanogap Electrodes toward Robust Resistive Random Access Memory. Advanced Materials, 2016, 28, 8227-8233.	21.0	20
52	Co-crystal engineering: a novel method to obtain one-dimensional (1D) carbon nanocrystals of corannulene–fullerene by a solution process. Nanoscale, 2016, 8, 14920-14924.	5.6	55
53	Gibbs–Curie–Wulff Theorem in Organic Materials: A Case Study on the Relationship between Surface Energy and Crystal Growth. Advanced Materials, 2016, 28, 1697-1702.	21.0	88
54	Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts. ACS Nano, 2016, 10, 7125-7134.	14.6	132

#	Article	IF	Citations
55	2D Mica Crystal as Electret in Organic Fieldâ€Effect Transistors for Multistate Memory. Advanced Materials, 2016, 28, 3755-3760.	21.0	62
56	Transparent Conductive Electrodes from Graphene/PEDOT:PSS Hybrid Inks for Ultrathin Organic Photodetectors. Advanced Materials, 2015, 27, 669-675.	21.0	251
57	High-performance deformable photoswitches with p-doped graphene as the top window electrode. Journal of Materials Chemistry C, 2015, 3, 37-40.	5.5	8
58	Exfoliation of Graphite into Graphene in Aqueous Solutions of Inorganic Salts. Journal of the American Chemical Society, 2014, 136, 6083-6091.	13.7	1,181
59	Graphene nanoribbon heterojunctions. Nature Nanotechnology, 2014, 9, 896-900.	31.5	528
60	Electrochemically Exfoliated Graphene as Solution-Processable, Highly Conductive Electrodes for Organic Electronics. ACS Nano, 2013, 7, 3598-3606.	14.6	532
61	Bioinspired Waferâ€Scale Production of Highly Stretchable Carbon Films for Transparent Conductive Electrodes. Angewandte Chemie - International Edition, 2013, 52, 5535-5538.	13.8	129
62	Self-assembly of reduced graphene oxide at liquid–air interface for organic field-effect transistors. Journal of Materials Chemistry, 2012, 22, 6171.	6.7	12
63	Physicochemical, self-assembly and field-effect transistor properties of anti- and syn- thienoacene isomers. Journal of Materials Chemistry, 2011, 21, 11335.	6.7	18
64	Dicyanomethylene-Substituted Fused Tetrathienoquinoid for High-Performance, Ambient-Stable, Solution-Processable n-Channel Organic Thin-Film Transistors Chemistry of Materials, 2011, 23, 3138-3140.	6.7	105
65	Organic single crystals or crystalline micro/nanostructures: Preparation and field-effect transistor applications. Science China Chemistry, 2010, 53, 1225-1234.	8.2	6
66	Organic Single Crystal Fieldâ€effect Transistors Based on 6 <i>H</i> à€pyrrolo[3,2– <i>b</i> :4,5– <i>b´</i>]bis[1,4]benzothiazine and its Derivatives. Advanced Materials, 2010, 22, 2458-2462.	21.0	56
67	Micro- and Nanocrystals of Organic Semiconductors. Accounts of Chemical Research, 2010, 43, 529-540.	15.6	370
68	Single crystal ribbons and transistors of a solution processed sickle-like fused-ring thienoacene. Journal of Materials Chemistry, 2010, 20, 6014.	6.7	36
69	Metastable Copperâ€Phthalocyanine Singleâ€Crystal Nanowires and Their Use in Fabricating Highâ€Performance Fieldâ€Effect Transistors. Advanced Functional Materials, 2009, 19, 3776-3780.	14.9	81
70	Micrometer―and Nanometerâ€6ized, Singleâ€Crystalline Ribbons of a Cyclic Triphenylamine Dimer and Their Application in Organic Transistors. Advanced Materials, 2009, 21, 1605-1608.	21.0	22
71	Micrometerâ€Sized Organic Single Crystals, Anisotropic Transport, and Fieldâ€Effect Transistors of a Fusedâ€Ring Thienoacene. Advanced Materials, 2009, 21, 4492-4495.	21.0	106
72	Cruciforms: Assembling Single Crystal Micro- and Nanostructures from One to Three Dimensions and Their Applications in Organic Field-Effect Transistors. Chemistry of Materials, 2009, 21, 2840-2845.	6.7	103

#	Article	IF	CITATIONS
73	New type of organic semiconductors for field-effect transistors with carbon-carbon triple bonds. Journal of Materials Chemistry, 2009, 19, 1477.	6.7	41
74	Improvement of electrical characteristics of fluorinated perylene diimide thin-film transistors by gate dielectric surface treatment. , 2007, , .		0
75	Dibenzothiophene derivatives as new prototype semiconductors for organic field-effect transistors. Journal of Materials Chemistry, 2007, 17, 1421.	6.7	55
76	Highâ€Performance Fieldâ€Effect Transistor Based on Dibenzo[<i>d< i>,<i>d< i>′]thieno[3,2â€<i>b< i>;4,5â€<i>b< i>′]dithiophene, an Easily Synthesized Semiconductor with High Ionization Potential. Advanced Materials, 2007, 19, 3008-3011.</i></i></i></i>	21.0	178