
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2479996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional changes of the basal ganglia circuitry in Parkinson's disease. Progress in Neurobiology, 2000, 62, 63-88.	2.8	477
2	Animal models of Parkinson's disease. FEBS Journal, 2012, 279, 1156-1166.	2.2	340
3	Parkinson's Disease in Women and Men: What's the Difference?. Journal of Parkinson's Disease, 2019, 9, 501-515.	1.5	304
4	Glutamate and Parkinson's disease. Molecular Neurobiology, 1996, 12, 73-94.	1.9	296
5	The 6-hydroxydopamine model: News from the past. Parkinsonism and Related Disorders, 2008, 14, S124-S129.	1.1	247
6	Parkinson's disease patients have a complex phenotypic and functional Th1 bias: cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naÃ⁻ve and drug-treated patients. Journal of Neuroinflammation, 2018, 15, 205.	3.1	174
7	A further update on the role of excitotoxicity in the pathogenesis of Parkinson's disease. Journal of Neural Transmission, 2014, 121, 849-859.	1.4	160
8	Locus Coeruleus and Neuronal Plasticity in a Model of Focal Limbic Epilepsy. Epilepsia, 2006, 47, 21-25.	2.6	159
9	Time-course of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6-hydroxydopamine in the rat: new clues from an old model. European Journal of Neuroscience, 2007, 25, 397-405.	1.2	156
10	Naproxen Sodium in Menstrual Migraine Prophylaxis: A Double-Blind Placebo Controlled Study. Headache, 1990, 30, 705-709.	1.8	145
11	Transplantation of Undifferentiated Human Mesenchymal Stem Cells Protects against 6-Hydroxydopamine Neurotoxicity in the Rat. Cell Transplantation, 2010, 19, 203-218.	1.2	136
12	Neural and Immune Mechanisms in the Pathogenesis of Parkinson's Disease. Journal of NeuroImmune Pharmacology, 2013, 8, 189-201.	2.1	132
13	Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson's disease. Brain Research, 2010, 1311, 12-27.	1.1	129
14	Neuroprotective effect of rasagiline in a rodent model of Parkinson's disease. Experimental Neurology, 2004, 187, 455-459.	2.0	114
15	SOD1 and DJ-1 Converge at Nrf2 Pathway: A Clue for Antioxidant Therapeutic Potential in Neurodegeneration. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-12.	1.9	101
16	Plasma Homocysteine and I-DOPA Metabolism in Patients with Parkinson Disease. Clinical Chemistry, 2001, 47, 1102-1104.	1.5	98
17	Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson's disease. Neurobiology of Disease, 2008, 29, 161-168.	2.1	96
18	Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease. Cell Reports, 2016, 15, 1866-1875.	2.9	93

#	Article	IF	CITATIONS
19	Cognitive and affective status in mild hypothyroidism and interactions with l-thyroxine treatment. Acta Neurologica Scandinavica, 2004, 110, 59-66.	1.0	92
20	Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson's disease. Neurobiology of Disease, 2006, 22, 1-9.	2.1	92
21	Dopaminergic Receptors on CD4+ T Naive and Memory Lymphocytes Correlate with Motor Impairment in Patients with Parkinson's Disease. Scientific Reports, 2016, 6, 33738.	1.6	91
22	Role of Autophagy in Parkinson's Disease. Current Medicinal Chemistry, 2019, 26, 3702-3718.	1.2	91
23	Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology, 2006, 66, 529-534.	1.5	88
24	Activation of the DNA damage response in vivo in synucleinopathy models of Parkinson's disease. Cell Death and Disease, 2018, 9, 818.	2.7	85
25	Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. Journal of Neuroinflammation, 2016, 13, 146.	3.1	77
26	Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson's disease cells. Neurobiology of Disease, 2015, 82, 235-242.	2.1	76
27	Functional and neurochemical changes of the gastrointestinal tract in a rodent model of Parkinson's disease. Neuroscience Letters, 2009, 467, 203-207.	1.0	75
28	Glucocerebrosidase mutations and synucleinopathies: Toward a model of precision medicine. Movement Disorders, 2019, 34, 9-21.	2.2	73
29	An update on the potential role of excitotoxicity in the pathogenesis of Parkinson's disease. Functional Neurology, 2010, 25, 65-71.	1.3	68
30	The Exosomal/Total α-Synuclein Ratio in Plasma Is Associated With Glucocerebrosidase Activity and Correlates With Measures of Disease Severity in PD Patients. Frontiers in Cellular Neuroscience, 2018, 12, 125.	1.8	66
31	Subthalamic infusion of an NMDA antagonist prevents basal ganglia metabolic changes and nigral degeneration in a rodent model of Parkinson's disease. Annals of Neurology, 2001, 49, 525-529.	2.8	65
32	Intestinal dysmotility and enteric neurochemical changes in a Parkinson's disease rat model. Autonomic Neuroscience: Basic and Clinical, 2012, 169, 77-86.	1.4	65
33	Glucocerebrosidase Defects as a Major Risk Factor for Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 97.	1.7	65
34	Effects of CGRP receptor antagonism in nitroglycerin-induced hyperalgesia. Cephalalgia, 2014, 34, 594-604.	1.8	64
35	Peripheral Levels of BDNF and NGF in Primary Headaches. Cephalalgia, 2006, 26, 136-142.	1.8	63
36	Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells. FA¬toterapA¬A¢, 2013, 89, 48-57.	1.1	61

#	Article	IF	CITATIONS
37	Bioenergetic and proteolytic defects in fibroblasts from patients with sporadic Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1385-1394.	1.8	59
38	Modifications of apoptosis-related protein levels in lymphocytes of patients with Parkinson?s disease. The effect of dopaminergic treatment. Journal of Neural Transmission, 2004, 111, 1017-30.	1.4	58
39	Insulin Receptor β-Subunit Haploinsufficiency Impairs Hippocampal Late-Phase LTP and Recognition Memory. NeuroMolecular Medicine, 2012, 14, 262-269.	1.8	58
40	New pharmacological avenues for the treatment of <scp>l</scp> -DOPA-induced dyskinesias in Parkinson's disease: targeting glutamate and adenosine receptors. Expert Opinion on Investigational Drugs, 2012, 21, 153-168.	1.9	58
41	Influence of Estrogen Modulation on Clia Activation in a Murine Model of Parkinson's Disease. Frontiers in Neuroscience, 2017, 11, 306.	1.4	58
42	Dopaminergic modulation of oxidative stress and apoptosis in human peripheral blood lymphocytes: evidence for a D1-like receptor-dependent protective effect. Free Radical Biology and Medicine, 2004, 36, 1233-1240.	1.3	57
43	The Involvement of Post-Translational Modifications in Alzheimer's Disease. Current Alzheimer Research, 2018, 15, 313-335.	0.7	57
44	Cerebrospinal fluid norepinephrine, 3-methoxy-4-hydroxyphenylglycol and neuropeptide Y levels in Parkinson's disease, multiple system atrophy and dementia of the Alzheimer type. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1992, 4, 191-205.	1.2	56
45	Subthalamic Ablation Reverses Changes in Basal Ganglia Oxidative Metabolism and Motor Response to Apomorphine Induced by Nigrostriatal Lesion in Rats. European Journal of Neuroscience, 1997, 9, 1407-1413.	1.2	55
46	Dopamine receptor agonists for Parkinson's disease. Expert Opinion on Investigational Drugs, 2014, 23, 387-410.	1.9	54
47	Intracarotid Infusion of Mesenchymal Stem Cells in an Animal Model of Parkinson's Disease, Focusing on Cell Distribution and Neuroprotective and Behavioral Effects. Stem Cells Translational Medicine, 2015, 4, 1073-1085.	1.6	52
48	Activation of the CREB/c-Fos Pathway during Long-Term Synaptic Plasticity in the Cerebellum Granular Layer. Frontiers in Cellular Neuroscience, 2017, 11, 184.	1.8	52
49	Homocysteine and Parkinson's disease: A dangerous liaison?. Journal of the Neurological Sciences, 2007, 257, 31-37.	0.3	49
50	Acute Reduction of Anandamideâ€Hydrolase (FAAH) Activity is Coupled With a Reduction of Nociceptive Pathways Facilitation in Medicationâ€Overuse Headache Subjects After Withdrawal Treatment. Headache, 2012, 52, 1350-1361.	1.8	49
51	Enteric Dysfunctions in Experimental Parkinsons Disease: Alterations of Excitatory Cholinergic Neurotransmission Regulating Colonic Motility in Rats. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 233-243.	1.3	49
52	DNA damage and ubiquitinated neuronal inclusions in the substantia nigra and striatum of mice following MDMA (ecstasy). Psychopharmacology, 2004, 173, 353-363.	1.5	48
53	Effects of early and delayed treatment with an mGluR5 antagonist on motor impairment, nigrostriatal damage and neuroinflammation in a rodent model of Parkinson's disease. Brain Research Bulletin, 2010, 82, 29-38.	1.4	48
54	Peripheral-Central Neuroimmune Crosstalk in Parkinson's Disease: What Do Patients and Animal Models Tell Us?. Frontiers in Neurology, 2019, 10, 232.	1.1	48

#	Article	IF	CITATIONS
55	Peripheral markers of oxidative stress in Parkinson's disease. the role of L-DOPA. Free Radical Biology and Medicine, 1999, 27, 428-437.	1.3	44
56	Brain monoaminergic neurotransmission parameters in weanling rats after perinatal exposure to methylmercury and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153). Brain Research, 2006, 1112, 91-98.	1.1	44
57	Evolution of prodromal parkinsonian features in a cohort of <i>GBA</i> mutation-positive individuals: a 6-year longitudinal study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1091-1097.	0.9	44
58	Peripheral inflammation and neuroprotection: Systemic pretreatment with complete Freund's adjuvant reduces 6-hydroxydopamine toxicity in a rodent model of Parkinson's disease. Neurobiology of Disease, 2006, 24, 492-505.	2.1	43
59	Oxidative stress and pro-apoptotic conditions in a rodent model of Wilson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1741, 325-330.	1.8	42
60	Age-related changes of protein SUMOylation balance in the AβPP Tg2576 mouse model of Alzheimer's disease. Frontiers in Pharmacology, 2014, 5, 63.	1.6	42
61	Prospects of glutamate antagonists in the therapy of Parkinson's disease. Fundamental and Clinical Pharmacology, 1998, 12, 4-12.	1.0	41
62	Quantitative study of mitochondrial complex I in platelets of parkinsonian patients. Movement Disorders, 1998, 13, 11-15.	2.2	41
63	Peripheral expression of key regulatory kinases in Alzheimer's disease and Parkinson's disease. Neurobiology of Aging, 2011, 32, 2142-2151.	1.5	41
64	Modifications of Neuroactive Steroid Levels in an Experimental Model of Nigrostriatal Degeneration: Potential Relevance to the Pathophysiology of Parkinson's Disease. Journal of Molecular Neuroscience, 2012, 46, 177-183.	1.1	39
65	Effects of kynurenic acid analogue 1 (KYNA-A1) in nitroglycerin-induced hyperalgesia: Targets and anti-migraine mechanisms. Cephalalgia, 2017, 37, 1272-1284.	1.8	39
66	Monoamines and related metabolite levels in the cerebrospinal fluid of patients with dementia of Alzheimer type. Influence of treatment with L-deprenyl. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1991, 3, 15-25.	1.2	38
67	DNA fragmentation and oxidative stress in the hippocampal formation: a bridge between 3,4-methylenedioxymethamphetamine (ecstasy) intake and long-lasting behavioral alterations. Behavioural Pharmacology, 2007, 18, 471-481.	0.8	37
68	A Role for Brain Cyclooxygenaseâ€2 and Prostaglandinâ€E2 in Migraine: Effects of Nitroglycerin. International Review of Neurobiology, 2007, 82, 373-382.	0.9	36
69	Free plasma catecholamine levels in healthy subjects: A basal and dynamic study. The influence of age. Scandinavian Journal of Clinical and Laboratory Investigation, 1992, 52, 9-17.	0.6	35
70	Neuroprotection by Rasagiline: A New Therapeutic Approach to Parkinson's Disease?. CNS Neuroscience & Therapeutics, 2005, 11, 183-194.	4.0	35
71	A New 5-HT2 Antagonist (Ritanserin) in the Treatment of Chronic Headache With Depression. A Double-Blind Study vs Amitriptyline. Headache, 1990, 30, 439-444.	1.8	34
72	Behavioral responses and Fos activation following painful stimuli in a rodent model of Parkinson's disease. Brain Research, 2007, 1176, 53-61.	1.1	34

#	Article	IF	CITATIONS
73	Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors. Experimental Cell Research, 2010, 316, 1148-1158.	1.2	34
74	Simultaneous determination of l-dopa and 3-O-methyldopa in human platelets and plasma using high-performance liquid chromatography with electrochemical detection. Biomedical Applications, 1997, 700, 278-282.	1.7	33
75	Effect of subthalamic nucleus lesion on mitochondrial enzyme activity in rat basal ganglia. Brain Research, 1995, 669, 59-66.	1.1	32
76	Nitroglycerin enhances cGMP expression in specific neuronal and cerebrovascular structures of the rat brain. Journal of Chemical Neuroanatomy, 2004, 27, 23-32.	1.0	32
77	Activation of brain metabolism and fos during limbic seizures: The role of Locus Coeruleus. Neurobiology of Disease, 2008, 30, 388-399.	2.1	31
78	Neuroprotective Potential of Adenosine A _{2A} and Cannabinoid CB ₁ Receptor Antagonists in an Animal Model of Parkinson Disease. Journal of Neuropathology and Experimental Neurology, 2014, 73, 414-424.	0.9	31
79	Dual target strategy: combining distinct nonâ€dopaminergic treatments reduces neuronal cell loss and synergistically modulates <scp>l</scp> â€ <scp>DOPA</scp> â€induced rotational behavior in a rodent model of Parkinson's disease. Journal of Neurochemistry, 2015, 134, 740-747.	2.1	31
80	Evaluation of ADMA-DDAH-NOS axis in specific brain areas following nitroglycerin administration: study in an animal model of migraine. Journal of Headache and Pain, 2015, 16, 560.	2.5	31
81	Peripheral Markers of Apoptosis in Parkinson's Disease. Annals of the New York Academy of Sciences, 2003, 1010, 675-678.	1.8	30
82	Sphingolipid changes in Parkinson L444P <i>GBA</i> mutation fibroblasts promote α-synuclein aggregation. Brain, 2022, 145, 1038-1051.	3.7	30
83	Nitroglycerin-Induced Activation of Monoaminergic Transmission in the Rat. Cephalalgia, 2002, 22, 226-232.	1.8	29
84	Complex Changes in the Innate and Adaptive Immunity Accompany Progressive Degeneration of the Nigrostriatal Pathway Induced by Intrastriatal Injection of 6-Hydroxydopamine in the Rat. Neurotoxicity Research, 2017, 32, 71-81.	1.3	29
85	Neuroprotective and Symptomatic Effects of Cannabidiol in an Animal Model of Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 8920.	1.8	29
86	Role of central dopaminergic circuitry in pain processing and nitroglycerin-induced hyperalgesia. Brain Research, 2008, 1238, 215-223.	1.1	28
87	Dietary restriction does not prevent nigrostriatal degeneration in the 6-hydroxydopamine model of Parkinson's disease. Experimental Neurology, 2008, 212, 548-551.	2.0	28
88	Neuroprotective effects of human mesenchymal stem cells on neural cultures exposed to 6-hydroxydopamine: implications for reparative therapy in Parkinson's disease. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 289-304.	2.2	28
89	Pathological remodelling of colonic wall following dopaminergic nigrostriatal neurodegeneration. Neurobiology of Disease, 2020, 139, 104821.	2.1	28
90	Blockade of subthalamic glutamatergic activity corrects changes in neuronal metabolism and motor behavior in rats with nigrostriatal lesions. Neurological Sciences, 2001, 22, 49-50.	0.9	27

#	Article	IF	CITATIONS
91	Plasma homocysteine and I-dopa metabolism in patients with Parkinson disease. Clinical Chemistry, 2001, 47, 1102-4.	1.5	27
92	Noninvasive near-infrared live imaging of human adult mesenchymal stem cells transplanted in a rodent model of Parkinson's disease. International Journal of Nanomedicine, 2012, 7, 435.	3.3	25
93	Potential therapeutic effects of polyphenols in Parkinson's disease: in vivo and in vitro pre-clinical studies. Neural Regeneration Research, 2021, 16, 234.	1.6	25
94	Toxic profile of bergamot essential oil on survival and proliferation of SH-SY5Y neuroblastoma cells. Food and Chemical Toxicology, 2011, 49, 2780-2792.	1.8	24
95	Impaired hepatic function and central dopaminergic denervation in a rodent model of Parkinson's disease: A self-perpetuating crosstalk?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 176-184.	1.8	24
96	Selective stimulation of striatal dopamine receptors of the D1- or D2-class causes opposite changes of fos expression in the rat cerebral cortex. European Journal of Neuroscience, 2003, 17, 763-770.	1.2	23
97	Response of colonic motility to dopaminergic stimulation is subverted in rats with nigrostriatal lesion: relevance to gastrointestinal dysfunctions in Parkinson's disease. Neurogastroenterology and Motility, 2015, 27, 1783-1795.	1.6	23
98	Selective blockade of <scp>mG</scp> lu5 metabotropic glutamate receptors is protective against hepatic mitochondrial dysfunction in 6â€ <scp>OHDA</scp> lesioned Parkinsonian rats. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 695-703.	0.9	23
99	Endothelial nitric oxide synthase inhibition triggers inflammatory responses in the brain of male rats exposed to ischemiaâ€reperfusion injury. Journal of Neuroscience Research, 2018, 96, 151-159.	1.3	23
100	Combined response of plasma and platelet catecholamines to different types of short-term stress. Life Sciences, 1995, 56, 1113-1120.	2.0	22
101	Dopaminergic Modulation of Apoptosis in Human Peripheral Blood Mononuclear Cells. Annals of the New York Academy of Sciences, 2003, 1010, 679-682.	1.8	22
102	Electrophysiological and metabolic effects of CHF5074 in the hippocampus: Protection against in vitro ischemia. Pharmacological Research, 2014, 81, 83-90.	3.1	22
103	Development and biochemical characterization of a mouse model of Parkinson's disease bearing defective glucocerebrosidase activity. Neurobiology of Disease, 2019, 124, 289-296.	2.1	22
104	Profiling the Biochemical Signature of GBAâ€Related Parkinson's Disease in Peripheral Blood Mononuclear Cells. Movement Disorders, 2021, 36, 1267-1272.	2.2	22
105	MDMA Induces Caspase-3 Activation in the Limbic System but not in Striatum. Annals of the New York Academy of Sciences, 2006, 1074, 377-381.	1.8	21
106	Neuroprotective Effect of Nitroglycerin in a Rodent Model of Ischemic Stroke: Evaluation of Bclâ€2 Expression. International Review of Neurobiology, 2007, 82, 423-435.	0.9	21
107	Mitochondrial Complex I Reversible S-Nitrosation Improves Bioenergetics and Is Protective in Parkinson's Disease. Antioxidants and Redox Signaling, 2018, 28, 44-61.	2.5	21
108	Neuroprotective effects of lignan 7-hydroxymatairesinol (HMR/lignan) in a rodent model of Parkinson's disease. Nutrition, 2020, 69, 110494.	1.1	21

#	Article	IF	CITATIONS
109	GBA Mutations Influence the Release and Pathological Effects of Small Extracellular Vesicles from Fibroblasts of Patients with Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 2215.	1.8	21
110	Calcium Homeostasis Is Dysregulated in Parkinsonian Patients With l-DOPA-Induced Dyskinesias. Clinical Neuropharmacology, 2009, 32, 133-139.	0.2	20
111	Neuroprotection by the PARP inhibitor PJ34 modulates cerebral and circulating RAGE levels in rats exposed to focal brain ischemia. European Journal of Pharmacology, 2014, 744, 91-97.	1.7	19
112	Facemasks and face recognition: Potential impact on synaptic plasticity. Neurobiology of Disease, 2021, 153, 105319.	2.1	19
113	Determination of hydroxyl free radical formation in human platelets using high-performance liquid chromatography with electrochemical detection. Biomedical Applications, 1999, 732, 213-220.	1.7	17
114	Adhesion molecules as potential targets for neuroprotection in a rodent model of Parkinson's disease. Neurobiology of Disease, 2011, 43, 663-668.	2.1	17
115	Modulation of RAGE Isoforms Expression in the Brain and Plasma of Rats Exposed to Transient Focal Cerebral Ischemia. Neurochemical Research, 2012, 37, 1508-1516.	1.6	17
116	Radiological analysis of gastrointestinal dysmotility in a model of central nervous dopaminergic degeneration: Comparative study with conventional in vivo techniques in the rat. Journal of Pharmacological and Toxicological Methods, 2014, 70, 163-169.	0.3	17
117	The influence of gender in the evaluation of platelet and plasma catecholamines. Life Sciences, 1993, 52, 1995-2004.	2.0	16
118	Intrastriatal injection of D1 or D2 dopamine agonists affects glucose utilization in both the direct and indirect pathways of the rat basal ganglia. Neuroscience Letters, 2001, 309, 161-164.	1.0	16
119	Effects of dopaminergic stimulation on peripheral markers of apoptosis: relevance to Parkinson?s disease. Neurological Sciences, 2003, 24, 157-158.	0.9	16
120	Autoradiographic study of mitochondrial complex I and glutamate receptors in the basal ganglia of rats after unilateral subthalamic lesion. Neuroscience Letters, 1995, 186, 99-102.	1.0	15
121	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mtext>A </mml:mtext> < n Antagonism and Dyskinesia in Parkinson's Disease. Parkinson's Disease, 2012, 2012, 1-8.</mml:msub></mml:mrow></mml:math 	າ າວະຣ າrow	> এক্রml:mte
122	Effects of L-DOPA/benserazide co-treatment on colonic excitatory cholinergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. Neuropharmacology, 2017, 123, 22-33.	2.0	15
123	Dopamine Receptor Agonists Mediate Neuroprotection in Malonate-Induced Striatal Lesion in the Rat. Experimental Neurology, 2002, 178, 301-305.	2.0	14
124	Subtle alterations of excitatory transmission are linked to presynaptic changes in the hippocampus of PINK1â€deficient mice. Synapse, 2016, 70, 223-230.	0.6	14
125	Investigational drugs in Phase I and Phase II for Levodopa-induced dyskinesias. Expert Opinion on Investigational Drugs, 2017, 26, 777-791.	1.9	14
126	Magnetic resonance spectroscopy in Parkinson's disease and parkinsonian syndromes. Functional Neurology, 2007, 22, 75-9.	1.3	14

#	Article	IF	CITATIONS
127	Modifications of plasma and platelet levels of L-DOPA and its direct metabolites during treatment with tolcapone or entacapone in patients with Parkinson?s disease. Journal of Neural Transmission, 2003, 110, 911-922.	1.4	13
128	Effects of homocysteine on apoptosis-related proteins and anti-oxidant systems in isolated human lymphocytes. FEBS Journal, 2004, 271, 1671-1676.	0.2	13
129	Association of UDP-glucuronosyltransferase 1A9 polymorphisms with adverse reactions to catechol-O-methyltransferase inhibitors in Parkinson's disease patients. European Journal of Clinical Pharmacology, 2012, 68, 1493-1499.	0.8	13
130	An update on the use of non-ergot dopamine agonists for the treatment of Parkinson's disease. Expert Opinion on Pharmacotherapy, 2020, 21, 2279-2291.	0.9	13
131	Clinical and Dopamine Transporter Imaging Trajectories in a Cohort of Parkinson's Disease Patients with <scp>GBA</scp> Mutations. Movement Disorders, 2022, 37, 106-118.	2.2	13
132	Adenosine receptors and l-DOPA-induced dyskinesia in Parkinson's disease: potential targets for a new therapeutic approach. Experimental Neurology, 2003, 184, 556-560.	2.0	12
133	Assay of [3H] Dihydrorotenone Binding to Complex I in Intact Human Platelets. Analytical Biochemistry, 1995, 230, 16-19.	1.1	11
134	Search for Cellular Stress Biomarkers in Lymphocytes from Patients with Multiple Sclerosis: A Pilot Study. PLoS ONE, 2012, 7, e44935.	1.1	11
135	Modulation of cerebral RAGE expression following nitric oxide synthase inhibition in rats subjected to focal cerebral ischemia. European Journal of Pharmacology, 2017, 800, 16-22.	1.7	11
136	Effects of Etoperidone on Sympathetic and Pituitary-Adrenal Responses to Diverse Stressors in Humans. Clinical Neuropharmacology, 1993, 16, 127-138.	0.2	10
137	Neuroprotective effects mediated by dopamine receptor agonists against malonate-induced lesion in the rat striatum. Neurological Sciences, 2003, 24, 180-181.	0.9	10
138	In vivo imaging of early signs of dopaminergic neuronal death in an animal model of Parkinson's disease. Neurobiology of Disease, 2018, 114, 74-84.	2.1	10
139	Unilateral lesion of the subthalamic nucleus enhances cortical fos expression associated with focally evoked seizures in the rat. Brain Research, 2006, 1101, 145-150.	1.1	7
140	The remote assessment of parkinsonism supporting the ongoing development of interventions in Gaucher disease. Neurodegenerative Disease Management, 2021, 11, 451-458.	1.2	7
141	Characterization of gene expression induced by RTN-1C in human neuroblastoma cells and in mouse brain. Neurobiology of Disease, 2010, 40, 634-644.	2.1	6
142	Gender biased neuroprotective effect of Transferrin Receptor 2 deletion in multiple models of Parkinson's disease. Cell Death and Differentiation, 2021, 28, 1720-1732.	5.0	6
143	Cardiopressor Effects of Short-term Treatment With Cabergoline in L-Dopa Stable Responder Parkinsonian Patients. Clinical Neuropharmacology, 1991, 14, 343-351.	0.2	5
144	Simultaneous assay of platelet and plasma catecholamines by HPLC with coulometric detection. Chromatographia, 1993, 36, 164-166.	0.7	5

#	Article	IF	CITATIONS
145	Modifications of Local Cerebral Metabolic Rates for Glucose and Motor Behavior in Rats with Unilateral Lesion of the Subthalamic Nucleus. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 149-154.	2.4	5
146	The origin recognition complex subunit, ORC3, is developmentally regulated and supports the expression of biochemical markers of neuronal maturation in cultured cerebellar granule cells. Brain Research, 2010, 1358, 1-10.	1.1	5
147	In vivo modeling of prodromal stage of Parkinson's disease. Journal of Neuroscience Methods, 2020, 342, 108801.	1.3	5
148	Proteasomal inhibition and apoptosis regulatory changes in human isolated lymphocytes: The synergistic role of dopamine. Journal of Cellular Biochemistry, 2008, 103, 877-885.	1.2	4
149	Effects of the intrastriatal administration of selective dopaminergic agonists on Fos expression in the rat brain. Neurological Sciences, 2002, 23, s57-s58.	0.9	2
150	Fibroblasts from skin biopsies as a tool for biomarker discovery in Parkinson× ³ s disease. Free Radical Biology and Medicine, 2014, 75, S10.	1.3	2
151	From bench to bedside: the importance for neurodegenerative disorders of crosstalk between basic and clinical research. Functional Neurology, 2013, 28, 5.	1.3	2
152	Selective lesion of the substantia nigra pars reticulata reduces the cortical Fos expression induced by stimulation of striatal D1-like receptors, in the rat. Experimental Neurology, 2006, 200, 240-244.	2.0	1
153	Noninvasive neuromodulation in Parkinson's disease: Neuroplasticity implication and therapeutic perspectives. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 185-198.	1.0	1
154	Neuroprotection: promise and pitfalls in anti-inflammatory treatment of Alzheimer's disease. Functional Neurology, 2002, 17, 175-6.	1.3	1
155	A reliable indirect cell-labelling protocol for optical imaging allows ex vivo visualisation of mesenchymal stem cells after transplantation. Archives Italiennes De Biologie, 2013, 151, 114-25.	0.1	1
156	Plasma beta-endorphin, cortisol and norepinephrine responses to physical and metabolic stressors in young and elderly humans. Stress and Health, 1992, 8, 1-9.	0.7	0
157	Neuroprotective compounds and innovative therapeutic strategies for Parkinson's disease: experimental and clinical studies. Open Access Journal of Clinical Trials, 2009, Volume 1, 1-15.	1.5	0
158	Functional and Neurochemical Alterations in the Enteric Nervous System (ENS) in the Unilateral 6-Ohda Rat Model of Parkinson Disease (PD). Gastroenterology, 2011, 140, S-602.	0.6	0
159	Single or combined treatment with I-DOPA and quinpirole differentially modulate expression and phosphorylation of key regulatory kinases in neuroblastoma cells. Neuroscience Letters, 2013, 552, 168-173.	1.0	0
160	Reply to: "Increased alpha‣ynuclein Level in <scp>CD45</scp> ⁺ Blood Cells in Asymptomatic Carriers of <scp>GBA</scp> Mutations― Movement Disorders, 2021, 36, 1998-1999.	2.2	0
161	Are Lysosomes Potential Therapeutic Targets for Parkinson's Disease?. CNS and Neurological Disorders - Drug Targets, 2022, 21, 642-655.	0.8	0
162	Combined GCASE/ALPHA-synuclein pattern may identify specific prodomal PD patterns in GBA carriers: A cluster analysis study. Journal of the Neurological Sciences, 2021, 429, 119455.	0.3	0

#	Article	IF	CITATIONS
163	Functional neurology at the dawn of the third millennium: the translation of neuroscience into neurology. Functional Neurology, 2002, 17, 5-6.	1.3	Ο
164	Neuronal networks in emotions. Functional Neurology, 2002, 17, 111-2.	1.3	0