Costantino Creton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2479927/publications.pdf

Version: 2024-02-01

218 papers

13,367 citations

20759 60 h-index 28224 105 g-index

225 all docs

225 docs citations

times ranked

225

8093 citing authors

#	Article	IF	CITATIONS
1	A molecular interpretation of the toughness of multiple network elastomers at high temperature. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116127119.	3.3	17
2	Heterogeneous nucleation of creases in swelling polymer gels. Physical Review E, 2022, 105, 034504.	0.8	1
3	Dynamics of Hydrogels with a Variable Ratio of Permanent and Transient Cross-Links: Constitutive Model and Its Molecular Interpretation. Macromolecules, 2022, 55, 3550-3562.	2.2	О
4	Molecular Mechanism Underpinning Stable Mechanical Performance and Enhanced Conductivity of Air-Aged Ionic Conductive Elastomers. Macromolecules, 2022, 55, 4665-4674.	2.2	4
5	Controlling Architecture and Mechanical Properties of Polyether Networks with Organoaluminum Catalysts. Macromolecules, 2022, 55, 5601-5609.	2.2	8
6	Fast reversible isomerization of merocyanine as a tool to quantify stress history in elastomers. Chemical Science, 2021, 12, 1693-1701.	3.7	29
7	Mechanochemical tools for polymer materials. Chemical Society Reviews, 2021, 50, 4100-4140.	18.7	228
8	Strain induced strengthening of soft thermoplastic polyurethanes under cyclic deformation. Journal of Polymer Science, 2021, 59, 685-696.	2.0	15
9	Evolution of the Nanostructure and Viscoelastic Properties of Nitrile Rubber upon Mechanical Rejuvenation and Physical Aging. Macromolecules, 2021, 54, 2828-2834.	2.2	5
10	Effect of mesoscale phase contrast on fatigue-delaying behavior of self-healing hydrogels. Science Advances, 2021, 7, .	4.7	37
11	Cyclic fatigue failure of TPU using a crack propagation approach. Polymer Testing, 2021, 97, 107140.	2.3	23
12	Swelling and Mechanical Properties of Polyacrylamide-Derivative Dual-Crosslink Hydrogels Having Metal–Ligand Coordination Bonds as Transient Crosslinks. Gels, 2021, 7, 72.	2.1	4
13	Self-Organization at the Crack Tip of Fatigue-Resistant Thermoplastic Polyurethane Elastomers. Macromolecules, 2021, 54, 8726-8737.	2.2	15
14	Mechanochemistry unveils stress transfer during sacrificial bond fracture of tough multiple network elastomers. Chemical Science, 2021, 12, 11098-11108.	3.7	27
15	3D fluorescent mapping of invisible molecular damage after cavitation in hydrogen exposed elastomers. Soft Matter, 2021, 17, 4266-4274.	1.2	20
16	Why is mechanical fatigue different from toughness in elastomers? The role of damage by polymer chain scission. Science Advances, 2021, 7, eabg9410.	4.7	26
17	SEBS block copolymers as novel materials to design transdermal patches. International Journal of Pharmaceutics, 2020, 575, 118975.	2.6	25
18	Microfocused Beam SAXS and WAXS Mapping at the Crack Tip and Fatigue Crack Propagation in Natural Rubber. Advances in Polymer Science, 2020, , 467-491.	0.4	3

#	Article	IF	Citations
19	Quantifying Rate- and Temperature-Dependent Molecular Damage in Elastomer Fracture. Physical Review X, 2020, 10 , .	2.8	35
20	Topology-Specific Injectable Sticky Hydrogels. Macromolecules, 2020, 53, 9779-9792.	2.2	12
21	From force-responsive molecules to quantifying and mapping stresses in soft materials. Science Advances, 2020, 6, eaaz5093.	4.7	70
22	Coacervate-Based Underwater Adhesives in Physiological Conditions. ACS Applied Polymer Materials, 2020, 2, 3397-3410.	2.0	21
23	Dual Crosslink Hydrogels with Metal-Ligand Coordination Bonds: Tunable Dynamics and Mechanics Under Large Deformation. Advances in Polymer Science, 2020, , 1-20.	0.4	6
24	Time dependent fracture of soft materials: linear <i>versus</i> nonlinear viscoelasticity. Soft Matter, 2020, 16, 6163-6179.	1,2	24
25	Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7606-7612.	3.3	86
26	Tuning the Interactions in Multiresponsive Complex Coacervate-Based Underwater Adhesives. International Journal of Molecular Sciences, 2020, 21, 100.	1.8	14
27	Underwater Adhesion of Multiresponsive Complex Coacervates. Advanced Materials Interfaces, 2020, 7, 1901785.	1.9	40
28	Complex Coacervation: Underwater Adhesion of Multiresponsive Complex Coacervates (Adv. Mater.) Tj ETQq0 C	0 0 rgBT /C	overlock 10 Tf
29	Linking peel and tack performances of pressure sensitive adhesives. Soft Matter, 2020, 16, 3267-3275.	1.2	26
30	Thermally Triggered Injectable Underwater Adhesives. Macromolecular Rapid Communications, 2020, 41, e1900653.	2.0	16
31	Enhancement of the Adhesive Properties by Optimizing the Water Content in PNIPAM-Functionalized Complex Coacervates. ACS Applied Polymer Materials, 2020, 2, 1722-1730.	2.0	23
32	Mechanochromism and optical remodeling of multi-network elastomers containing anthracene dimers. Chemical Science, 2019, 10, 8367-8373.	3.7	62
33	Mechanics of zero degree peel test on a tape —Âeffects of large deformation, material nonlinearity, and finite bond length. Extreme Mechanics Letters, 2019, 32, 100518.	2.0	16
34	Supramolecular Structure for Large Strain Dissipation and Outstanding Impact Resistance in Polyvinylbutyral. Macromolecules, 2019, 52, 7821-7830.	2.2	18
35	Harnessing entropy to enhance toughness in reversibly crosslinked polymer networks. Soft Matter, 2019, 15, 2190-2203.	1.2	23
36	Hydrophobic Hydrogels: Hydrophobic Hydrogels with Fruitâ€Like Structure and Functions (Adv. Mater.) Tj ETQqr	0 0 0 rgBT	/Ogerlock 10

#	Article	lF	Citations
37	Hierarchical Sticker and Sticky Chain Dynamics in Self-Healing Butyl Rubber Ionomers. Macromolecules, 2019, 52, 4169-4184.	2.2	48
38	Hydrophobic Hydrogels with Fruitâ€Like Structure and Functions. Advanced Materials, 2019, 31, e1900702.	11.1	64
39	From Molecular Electrostatic Interactions and Hydrogel Architecture to Macroscopic Underwater Adherence. Macromolecules, 2019, 52, 3852-3862.	2.2	13
40	Temperature and aging dependence of strainâ€induced crystallization and cavitation in highly crosslinked and filled natural rubber. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 780-793.	2.4	19
41	Thermoresponsive Complex Coacervateâ€Based Underwater Adhesive. Advanced Materials, 2019, 31, e1808179.	11.1	137
42	A continuum model for progressive damage in tough multinetwork elastomers. Journal of the Mechanics and Physics of Solids, 2019, 125, 523-549.	2.3	30
43	Fracture mechanics of a self-healing hydrogel with covalent and physical crosslinks: A numerical study. Journal of the Mechanics and Physics of Solids, 2018, 120, 79-95.	2.3	41
44	Tuning the rheological properties of an ammonium methacrylate copolymer for the design of adhesives suitable for transdermal patches. European Journal of Pharmaceutical Sciences, 2018, 111, 238-246.	1.9	9
45	Mechanics of an adhesive tape in a zero degree peel test: effect of large deformation and material nonlinearity. Soft Matter, 2018, 14, 9681-9692.	1.2	21
46	Effect of the Strength of Stickers on Rheology and Adhesion of Supramolecular Center-Functionalized Polyisobutenes. Langmuir, 2018, 34, 12625-12634.	1.6	8
47	Nonlinear Viscoelastic Modeling of Adhesive Failure for Polyacrylate Pressure-Sensitive Adhesives. Macromolecules, 2018, 51, 8605-8610.	2.2	36
48	Equilibrium and Out-of-Equilibrium Adherence of Hydrogels against Polymer Brushes. Macromolecules, 2018, 51, 7556-7566.	2.2	18
49	Time-temperature equivalence in a PVA dual cross-link self-healing hydrogel. Journal of Rheology, 2018, 62, 991-1000.	1.3	25
50	Mechanics of elastomeric molecular composites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9110-9115.	3.3	78
51	Simple model on debonding of soft adhesives. Soft Matter, 2018, 14, 6206-6213.	1.2	20
52	Molecular Weight Dependence of Interdiffusion and Adhesion of Polymers at Short Contact Times. Langmuir, 2017, 33, 1670-1678.	1.6	18
53	Large strain viscoelastic dissipation during interfacial rupture in laminated glass. Soft Matter, 2017, 13, 1624-1633.	1.2	21
54	Molecular stitches for enhanced recycling of packaging. Science, 2017, 355, 797-798.	6.0	23

#	Article	IF	Citations
55	Water-based acrylic coatings reinforced by PISA-derived fibers. Polymer Chemistry, 2017, 8, 4992-4995.	1.9	47
56	In-situ measurement of the large strain response of the fibrillar debonding region during the steady peeling of pressure sensitive adhesives. International Journal of Fracture, 2017, 204, 175-190.	1.1	32
57	Mechanical properties of nanostructured films with an ultralow volume fraction of hard phase. Polymer, 2017, 109, 187-196.	1.8	29
58	Rheological properties of tough hydrogels based on an associating polymer with permanent and transient crosslinks: Effects of crosslinking density. Journal of Rheology, 2017, 61, 1371-1383.	1.3	36
59	Effects of multifunctional cross-linkers on rheology and adhesion of soft nanostructured materials. Soft Matter, 2017, 13, 7979-7990.	1.2	10
60	50th Anniversary Perspective: Networks and Gels: Soft but Dynamic and Tough. Macromolecules, 2017, 50, 8297-8316.	2.2	301
61	A Model for the Mullins Effect in Multinetwork Elastomers. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	33
62	Covalent Bond Scission in the Mullins Effect of a Filled Elastomer: Realâ€Time Visualization with Mechanoluminescence. Advanced Functional Materials, 2016, 26, 9063-9074.	7.8	132
63	Adhesion and non-linear rheology of adhesives with supramolecular crosslinking points. Soft Matter, 2016, 12, 7174-7185.	1.2	17
64	Combined Effect of Chain Extension and Supramolecular Interactions on Rheological and Adhesive Properties of Acrylic Pressure-Sensitive Adhesives. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33307-33315.	4.0	36
65	Characterizing Large Strain Elasticity of Brittle Elastomeric Networks by Embedding Them in a Soft Extensible Matrix. Advanced Functional Materials, 2016, 26, 2482-2492.	7.8	46
66	Mechanics of an Asymmetric Hard–Soft Lamellar Nanomaterial. ACS Nano, 2016, 10, 2054-2062.	7. 3	21
67	Fracture of dual crosslink gels with permanent and transient crosslinks. Extreme Mechanics Letters, 2016, 6, 52-59.	2.0	87
68	Fracture and adhesion of soft materials: a review. Reports on Progress in Physics, 2016, 79, 046601.	8.1	539
69	Mechanical Properties of Self-Recovery Tough Gels with Permanent and Reversible Crosslinks. Kobunshi Ronbunshu, 2015, 72, 597-605.	0.2	0
70	Nanocavitation around a crack tip in a soft nanocomposite: A scanning microbeam small angle X-ray scattering study. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 422-429.	2.4	33
71	Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives. Soft Matter, 2015, 11, 3480-3491.	1.2	73
72	Linear rheology of bis-urea functionalized supramolecular poly(butylacrylate)s: Part I – weak stickers. Polymer, 2015, 69, 233-240.	1.8	45

#	Article	lF	CITATIONS
73	Aperiodic "Bricks and Mortar―Mesophase: a New Equilibrium State of Soft Matter and Application as a Stiff Thermoplastic Elastomer. Macromolecules, 2015, 48, 5378-5384.	2.2	33
74	The elastostatic plane strain mode I crack tip stress and displacement fields in a generalized linear neo-Hookean elastomer. Journal of the Mechanics and Physics of Solids, 2015, 84, 21-38.	2.3	13
75	Rheology of a dual crosslink self-healing gel: Theory and measurement using parallel-plate torsional rheometry. Journal of Rheology, 2015, 59, 643-665.	1.3	46
76	Linear Rheology of Supramolecular Polymers Center-Functionalized with Strong Stickers. Macromolecules, 2015, 48, 7320-7326.	2.2	51
77	Structure of Tough Multiple Network Elastomers by Small Angle Neutron Scattering. Macromolecules, 2015, 48, 7945-7952.	2.2	28
78	Microstructure and Self-Assembly of Supramolecular Polymers Center-Functionalized with Strong Stickers. Macromolecules, 2015, 48, 8232-8239.	2.2	27
79	Synthesis and characterization of PEPO grafted carboxymethyl guar and carboxymethyl tamarind as new thermo-associating polymers. Carbohydrate Polymers, 2015, 117, 331-338.	5.1	40
80	Quantitative analysis of the debonding structure of soft adhesives. European Physical Journal E, 2014, 37, 3.	0.7	23
81	Influence of composition on the morphology of polyurethane/acrylic latex particles and adhesive films. International Journal of Adhesion and Adhesives, 2014, 50, 176-182.	1.4	13
82	Time Dependent Behavior of a Dual Cross-Link Self-Healing Gel: Theory and Experiments. Macromolecules, 2014, 47, 7243-7250.	2.2	166
83	Debonding Mechanisms of Soft Materials at Short Contact Times. Langmuir, 2014, 30, 10626-10636.	1.6	15
84	Probing pH-Responsive Interactions between Polymer Brushes and Hydrogels by Neutron Reflectivity. Langmuir, 2014, 30, 9700-9706.	1.6	8
85	Toughening Elastomers with Sacrificial Bonds and Watching Them Break. Science, 2014, 344, 186-189.	6.0	842
86	Simultaneous Freeâ€Radical and Addition Miniemulsion Polymerization: Effect of the Chain Transfer Agent on the Microstructure of Polyurethaneâ€Acrylic Pressureâ€Sensitive Adhesives. Macromolecular Materials and Engineering, 2013, 298, 53-66.	1.7	28
87	Waterborne hybrid polymer particles: Tuning of the adhesive performance by controlling the hybrid microstructure. European Polymer Journal, 2013, 49, 1541-1552.	2.6	22
88	Debonding energy of PDMS. European Physical Journal E, 2013, 36, 103.	0.7	23
89	Dynamics of Hybrid Polyacrylamide Hydrogels Containing Silica Nanoparticles Studied by Dynamic Light Scattering. Macromolecules, 2013, 46, 4567-4574.	2.2	38
90	Crack propagation at the interface between soft adhesives and model surfaces studied with a sticky wedge test. Soft Matter, 2013, 9, 6515.	1.2	16

#	Article	IF	CITATIONS
91	Opening and Closing of Nanocavities under Cyclic Loading in a Soft Nanocomposite Probed by Real-Time Small-Angle X-ray Scattering. Macromolecules, 2013, 46, 900-913.	2.2	34
92	Stress–Strain Relationship of Highly Stretchable Dual Cross-Link Gels: Separability of Strain and Time Effect. ACS Macro Letters, 2013, 2, 1065-1068.	2.3	164
93	Highâ€Shearâ€Strength Waterborne Polyurethane/Acrylic Soft Adhesives. Macromolecular Materials and Engineering, 2013, 298, 612-623.	1.7	46
94	Preload-responsive adhesion: effects of aspect ratio, tip shape and alignment. Journal of the Royal Society Interface, 2013, 10, 20130171.	1.5	38
95	Strain induced nanocavitation and crystallization in natural rubber probed by real time small and wide angle Xâ€ray scattering. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1125-1138.	2.4	33
96	pHâ€Responsive Swelling of Poly(acrylic acid) Brushes Synthesized by the Grafting Onto Route. Macromolecular Chemistry and Physics, 2013, 214, 2882-2890.	1.1	20
97	Soft Nanostructured Films with an Ultra‣ow Volume Fraction of Percolating Hard Phase. Macromolecular Rapid Communications, 2013, 34, 1524-1529.	2.0	45
98	Intelligent Materials with Adaptive Adhesion Properties Based on Comb-like Polymer Brushes. Langmuir, 2012, 28, 16444-16454.	1.6	33
99	Enhanced Adhesion of Elastic Materials to Small-Scale Wrinkles. Langmuir, 2012, 28, 14899-14908.	1.6	78
100	Adhesion of soft viscoelastic adhesives on periodic rough surfaces. Soft Matter, 2012, 8, 5350.	1.2	44
101	Structure of Surfaces and Interfaces of Poly(N,N-dimethylacrylamide) Hydrogels. Langmuir, 2012, 28, 12282-12287.	1.6	20
102	Formation of diblock copolymers at PP/PA6 interfaces and their role in local crystalline organization under fast heating and cooling conditions. Polymer, 2012, 53, 5138-5145.	1.8	7
103	Nanocavitation in Carbon Black Filled Styrene–Butadiene Rubber under Tension Detected by Real Time Small Angle X-ray Scattering. Macromolecules, 2012, 45, 1529-1543.	2.2	109
104	Reversible adhesion between a hydrogel and a polymer brush. Soft Matter, 2012, 8, 8184.	1.2	90
105	pH/Temperature control of interpolymer complexation between poly(acrylic acid) and weak polybases in aqueous solutions. Polymer, 2012, 53, 379-385.	1.8	25
106	Volume changes in a filled elastomer studied via digital image correlation. Polymer Testing, 2012, 31, 663-670.	2.3	33
107	Synthesis and Characterization of Poly(acrylic acid) Brushes: "Graftingâ€Onto―Route. Macromolecular Chemistry and Physics, 2012, 213, 293-300.	1.1	13
108	Effect of polymer–particle interaction on the fracture toughness of silica filled hydrogels. Soft Matter, 2011, 7, 6578.	1.2	46

#	Article	IF	Citations
109	Supramolecular design for polymer/titanium oxo-cluster hybrids: an open door to new organic–inorganic dynamers. Polymer Chemistry, 2011, 2, 2785.	1.9	8
110	Mechanical Properties of Adhesive Films Obtained from PUâ^'Acrylic Hybrid Particles. Macromolecules, 2011, 44, 2643-2652.	2.2	51
111	Synthesis of Acrylicâ^'Polyurethane Hybrid Latexes by Miniemulsion Polymerization and Their Pressure-Sensitive Adhesive Applications. Macromolecules, 2011, 44, 2632-2642.	2.2	84
112	Waterborne Polyurethaneâ^'Acrylic Hybrid Nanoparticles by Miniemulsion Polymerization: Applications in Pressure-Sensitive Adhesives. Langmuir, 2011, 27, 3878-3888.	1.6	105
113	Synthesis, characterization, and rheological properties of hybrid titanium starâ€shaped poly(<i>n</i> à€butyl acrylate). Journal of Polymer Science Part A, 2011, 49, 2636-2644.	2.5	10
114	Fracture of model polyurethane elastomeric networks. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 355-367.	2.4	35
115	A critical local energy release rate criterion for fatigue fracture of elastomers. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1518-1524.	2.4	73
116	Design of Nanostructured Waterborne Adhesives with Improved Shear Resistance. Macromolecular Materials and Engineering, 2011, 296, 31-41.	1.7	47
117	Bioinspired pressure actuated adhesive system. Materials Science and Engineering C, 2011, 31, 1152-1159.	3.8	57
118	Simultaneous free radical and addition miniemulsion polymerization: Effect of the diol on the microstructure of polyurethane-acrylic pressure-sensitive adhesives. Polymer, 2011, 52, 3021-3030.	1.8	40
119	Supramolecular Soft Adhesive Materials. Advanced Functional Materials, 2010, 20, 1803-1811.	7.8	129
120	Improving adhesion of acrylic waterborne PSAs to low surface energy materials: Introduction of stearyl acrylate. Journal of Polymer Science Part A, 2010, 48, 5030-5039.	2.5	32
121	An experimental investigation of fracture by cavitation of model elastomeric networks. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1409-1422.	2.4	60
122	Rate-dependent frictional adhesion in natural and synthetic gecko setae. Journal of the Royal Society Interface, 2010, 7, 259-269.	1.5	97
123	Miniemulsion Polymerization of 2-Ethylhexyl Acrylate. Polymer Architecture Control and Adhesion Properties. Macromolecules, 2010, 43, 8924-8932.	2.2	34
124	Self-Assembly in Solution of a Reversible Comb-Shaped Supramolecular Polymer. Macromolecules, 2010, 43, 2529-2534.	2.2	57
125	Large Strain and Fracture Properties of Poly(dimethylacrylamide)/Silica Hybrid Hydrogels. Macromolecules, 2010, 43, 2554-2563.	2.2	265
126	Measurement of the receding contact angle at the interface between a viscoelastic material and a rigid surface. Soft Matter, 2010, 6, 2685.	1.2	29

#	Article	IF	CITATIONS
127	Large strain behaviour of nanostructured polyelectrolyte hydrogels. Polymer, 2009, 50, 481-490.	1.8	47
128	Controlled Sparse and Percolating Cross-Linking in Waterborne Soft Adhesives. ACS Applied Materials & Los Representations (2009, 1, 2021-2029).	4.0	27
129	Large-Strain Mechanical Behavior of Model Block Copolymer Adhesives. Macromolecules, 2009, 42, 7605-7615.	2.2	79
130	A Comparison of Tackified, Miniemulsion Coreâ^'Shell Acrylic Latex Films with Corresponding Particle-Blend Films: Structureâ^'Property Relationships. Langmuir, 2009, 25, 11021-11031.	1.6	25
131	Fine Tuning the Adhesive Properties of a Soft Nanostructured Adhesive with Rheological Measurements. Journal of Adhesion, 2009, 85, 18-54.	1.8	131
132	Microscopic Modeling of the Dynamics of Frictional Adhesion in the Gecko Attachment System. Journal of Physical Chemistry B, 2009, 113, 3622-3628.	1.2	22
133	Deformation and adhesion of a periodic soft–soft nanocomposite designed with structured polymer colloid particles. Soft Matter, 2009, 5, 1440.	1.2	71
134	Adhesives for Lowâ€Energy Surfaces. Macromolecular Symposia, 2009, 281, 181-190.	0.4	9
135	A Molecular Mechanism for Toughening and Strengthening Waterborne Nanocomposites. Advanced Materials, 2008, 20, 90-94.	11.1	33
136	Detachment of stretched viscoelastic fibrils. European Physical Journal E, 2008, 25, 253-266.	0.7	35
137	Adhesion at interfaces between highly entangled polymer melts. Journal of Rheology, 2008, 52, 749-767.	1.3	38
138	Strain induced clustering in polyelectrolyte hydrogels. Soft Matter, 2008, 4, 1011.	1.2	41
139	Adhesion mechanisms at soft polymer interfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 1425-1442.	1.6	70
140	Temperature Stability of the Interfacial Structure between a Sulfonated Crystalline Alkyl Side-Chain Polymer and a Soft Adhesive. Langmuir, 2008, 24, 10169-10173.	1.6	2
141	Pattern Formation during Deformation of a Confined Viscoelastic Layer: From a Viscous Liquid to a Soft Elastic Solid. Physical Review Letters, 2008, 101, 074503.	2.9	134
142	Effect of a Gradient in Viscoelastic Properties on the Debonding Mechanisms of Soft Adhesives. Journal of Adhesion, 2007, 83, 491-505.	1.8	42
143	Synthesis and Viscoelastic Properties of Hydrophobically Modified Hydrogels. Macromolecular Symposia, 2007, 256, 189-194.	0.4	14
144	Sticky Feet: From Animals to Materials. MRS Bulletin, 2007, 32, 466-472.	1.7	90

#	Article	IF	CITATIONS
145	Role of Chain Interpenetration in the Adhesion between Immiscible Polymer Melts. Macromolecules, 2007, 40, 6325-6332.	2.2	35
146	Large Strain Hysteresis and Mullins Effect of Tough Double-Network Hydrogels. Macromolecules, 2007, 40, 2919-2927.	2.2	573
147	Synthesis and Rheological Behavior of New Hydrophobically Modified Hydrogels with Tunable Properties. Macromolecules, 2006, 39, 8128-8139.	2.2	84
148	Effect of the Diblock Content on the Adhesive and Deformation Properties of PSAs Based on Styrenic Block Copolymers., 2006,, 337-363.		7
149	Machine compliance and hardening effects on cavity growth in soft adhesives. International Journal of Adhesion and Adhesives, 2006, 26, 117-124.	1.4	3
150	Rheology of poly(N-vinyl pyrrolidone)–poly(ethylene glycol) adhesive blends under shear flow. Journal of Applied Polymer Science, 2006, 100, 522-537.	1.3	20
151	Controlling Tack with Bicomponent Polymer Brushes. Advanced Materials, 2006, 18, 2624-2628.	11.1	28
152	Waterborne, Nanocomposite Pressure-Sensitive Adhesives with High Tack Energy, Optical Transparency, and Electrical Conductivity. Advanced Materials, 2006, 18, 2730-2734.	11.1	130
153	Adhesive and Rheological Properties of Lightly Crosslinked Model Acrylic Networks. Journal of Adhesion, 2006, 82, 267-310.	1.8	79
154	Assessing the effect of latex particle size and distribution on the rheological and adhesive properties of model waterborne acrylic pressure-sensitive adhesives films. Journal of Colloid and Interface Science, 2005, 281, 325-338.	5.0	57
155	Cavity growth in soft adhesives. European Physical Journal E, 2005, 17, 389-401.	0.7	83
156	Investigation of shear failure mechanisms of pressure-sensitive adhesives. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3316-3330.	2.4	38
157	A statistical method for the prediction of the loop tack and the peel of PSAs from probe test measurements. Measurement Science and Technology, 2005, 16, 2020-2029.	1.4	4
158	Adhesion between Chemically Heterogeneous Switchable Polymeric Brushes and an Elastomeric Adhesive. Langmuir, 2005, 21, 7722-7725.	1.6	34
159	Reinforcement of polystyrene by covalently bonded oxo-titanium clusters. Progress in Solid State Chemistry, 2005, 33, 127-135.	3.9	29
160	Effect of the Presence of Diblock Copolymer on the Nonlinear Elastic and Viscoelastic Properties of Elastomeric Triblock Copolymers. Macromolecules, 2005, 38, 7807-7818.	2.2	73
161	Hydrophobically Modified Dimethylacrylamide Synthesis and Rheological Behavior. Macromolecules, 2005, 38, 2981-2989.	2.2	63
162	Mécanismes de déformation, d'endommagement et de rupture de joints collés. Mecanique Et Industries, 2005, 6, 37-43.	0.2	0

#	Article	IF	CITATIONS
163	Contact area between a viscoelastic solid and a hard, randomly rough, substrate. Journal of Chemical Physics, 2004, 120, 8779-8793.	1.2	122
164	MEASURING INTERFACIAL ADHESION BETWEEN A SOFT VISCOELASTIC LAYER AND A RIGID SURFACE USING A PROBE METHOD. Journal of Adhesion, 2004, 80, 87-118.	1.8	59
165	Hydrophobically modified acrylamide-based hydrogels. , 2004, , .		1
166	Deformation behavior of thin, compliant layers under tensile loading conditions. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 4023-4043.	2.4	149
167	Adhesion promotion between a homopolymer probe and a glass substrate coated with a block copolymer monolayer. Polymer, 2004, 45, 4445-4451.	1.8	5
168	Surface energy effects for cavity growth and nucleation in an incompressible neo-Hookean material–〓modeling and experiment. International Journal of Solids and Structures, 2004, 41, 6111-6127.	1.3	53
169	Adhesion Promotion Mechanisms at Isotactic Polypropylene/Polyamide 6 Interfaces:Â Role of the Copolymer Architecture. Macromolecules, 2004, 37, 6814-6822.	2.2	52
170	Experimental and Self-Consistent-Field Theoretical Study of Styrene Block Copolymer Self-Adhesive Materials. Macromolecules, 2004, 37, 5093-5109.	2,2	37
171	Crystalline Orientation and Adhesion at Polypropylene/Polyamide 6 Interfaces Compatibilized with Syndiotactic Polypropyleneâ^'Polyamide 6 Diblock Copolymers. Macromolecules, 2004, 37, 6806-6813.	2.2	15
172	Subcritical Failure of Soft Acrylic Adhesives under Tensile Stress. Langmuir, 2004, 20, 9156-9169.	1.6	37
173	Linear Viscoelasticity and Non-Linear Elasticity of Block Copolymer Blends Used as Soft Adhesives. Macromolecular Symposia, 2004, 214, 147-156.	0.4	17
174	Interface entre polymà res semi-cristallins renforcà © es par des copolymà res diblocs. Annales De Chimie: Science Des Materiaux, 2003, 28, 29-42.	0.2	0
175	Dynamic mechanical and tensile properties of poly(N-vinyl pyrrolidone)–poly(ethylene glycol) blends. Polymer, 2003, 44, 3561-3578.	1.8	43
176	Relation of glass transition temperature to the hydrogen bonding degree and energy in poly(N-vinyl) Tj ETQq0 0 0 temperatures featured for PVP solutions in liquid poly(ethylene glycol). Polymer, 2003, 44, 1819-1834.) rgBT /Ov 1.8	erlock 10 Tf 5 84
177	Materials Science of Adhesives: How to Bond Things Together. MRS Bulletin, 2003, 28, 419-423.	1.7	39
178	Pressure-Sensitive Adhesives: An Introductory Course. MRS Bulletin, 2003, 28, 434-439.	1.7	399
179	Crack propagation and defect formation at polymer interfaces investigated by ultra-small angle X-ray scattering. Physical Chemistry Chemical Physics, 2003, 5, 1235-1241.	1.3	6
180	Cohesive failure of thin layers of soft model adhesives under tension. Journal of Applied Physics, 2003, 93, 1557-1566.	1.1	122

#	Article	IF	Citations
181	Effects of geometric confinement on the adhesive debonding of soft elastic solids. Physical Review E, 2003, 68, 021805.	0.8	66
182	Tack., 2002,, 535-575.		18
183	Micromechanisms of Tack of Soft Adhesives Based on Styrenic Block Copolymers. Macromolecular Materials and Engineering, 2002, 287, 163.	1.7	99
184	Bonding of a viscoelastic periodic rough surface to a rigid layer. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 545-561.	2.4	11
185	Viscoelasticity and tack of poly(vinyl pyrrolidone)-poly(ethylene glycol) blends. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2395-2409.	2.4	48
186	Nucleation and growth of cavities in soft viscoelastic layers under tensile stress. European Physical Journal E, 2002, 9, 35-40.	0.7	44
187	Molecular Control of Crack Tip Plasticity Mechanisms at a PPâ^EPDM/PA6 Interface. Macromolecules, 2001, 34, 2702-2709.	2.2	21
188	Adhesion and Fracture of Interfaces Between Immiscible Polymers: from the Molecular to the Continuum Scal. Advances in Polymer Science, 2001, , 53-136.	0.4	141
189	Bulk and Interfacial Contributions to the Debonding Mechanisms of Soft Adhesives:Â Extension to Large Strains. Langmuir, 2001, 17, 4948-4954.	1.6	140
190	Block Copolymers at Interfaces, Mechanical Strength of., 2001,, 698-702.		0
191	Influence of Molecular Features on the Tackiness of Acrylic Polymer Melts. Macromolecules, 2001, 34, 7448-7458.	2.2	102
192	Role of the Interfacial Orientation in Adhesion between Semicrystalline Polymers. Macromolecules, 2001, 34, 2932-2936.	2.2	33
193	Elastomeric Adhesives. , 2001, , 2451-2455.		0
194	Experimental characterization of polymer-polymer adhesion by resonant acoustic scattering. AIP Conference Proceedings, 2001, , .	0.3	0
195	Fracture of polymer interfaces: what are the relevant length scales?. Macromolecular Symposia, 2000, 149, 245-256.	0.4	1
196	Micromechanics of flat-probe adhesion tests of soft viscoelastic polymer films. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 965-979.	2.4	115
197	Fracture toughness of interfaces between glassy polymers in a trilayer geometry. Polymer, 2000, 41, 9249-9263.	1.8	9
198	Role of surface roughness in controlling the adhesion of a soft adhesive on a hard surface. Comptes Rendus Physique, 2000, 1, 1197-1204.	0.1	19

#	Article	IF	CITATIONS
199	Deformation and failure modes of adhesively bonded elastic layers. Journal of Applied Physics, 2000, 88, 2956-2966.	1.1	206
200	Micromechanics of flat-probe adhesion tests of soft viscoelastic polymer films. , 2000, 38, 965.		1
201	Plasticity of polystyrene -poly(2,6,dimethy1,1,4,phenylene oxide) blends. Polymer, 1999, 40, 199-206.	1.8	23
202	Direct Observation of Cavitation and Fibrillation in a Probe Tack Experiment on Model Acrylic Pressure-Sensitive-Adhesives. Journal of Adhesion, 1999, 69, 307-359.	1.8	317
203	Mechanical Properties of Homopolymer Interfaces:  Transition from Simple Pullout To Crazing with Increasing Interfacial Width. Macromolecules, 1999, 32, 3420-3425.	2.2	82
204	Structure and Microdeformation of (iPP/iPP-g-MA)â^'PA6 Reaction Bonded Interfaces. Macromolecules, 1998, 31, 6164-6176.	2.2	34
205	Direct Correlation between Interfacial Width and Adhesion in Glassy Polymers. Macromolecules, 1998, 31, 2284-2292.	2.2	145
206	Enhanced Adhesion between Polypropylene and Polyamide-6: Role of Interfacial Nucleation of the β-Crystalline Form of Polypropylene. Macromolecules, 1997, 30, 2102-2109.	2.2	87
207	Effects of the Formation of Copolymer on the Interfacial Adhesion between Semicrystalline Polymers. Macromolecules, 1996, 29, 774-782.	2.2	136
208	How does tack depend on time of contact and contact pressure?. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 545-554.	2.4	173
209	Influence of Chain Entanglement on the Failure Modes in Block Copolymer Toughened Interfaces. Macromolecules, 1994, 27, 1774-1780.	2.2	85
210	Molecular Weight Effects in Chain Pullout. Macromolecules, 1994, 27, 3174-3183.	2.2	114
211	Optimum toughening of homopolymer interfaces with block copolymers. Macromolecules, 1993, 26, 6011-6020.	2.2	59
212	Transmission electron microscopic fracture studies of polymer interfaces. Macromolecules, 1992, 25, 4751-4758.	2.2	64
213	Micromechanics of crack growth into a craze in a polymer glass. Macromolecules, 1992, 25, 3948-3955.	2.2	92
214	Failure mechanisms of polymer interfaces reinforced with block copolymers. Macromolecules, 1992, 25, 3075-3088.	2.2	428
215	Craze fibril extension ratio measurements in glassy block copolymers. Colloid and Polymer Science, 1992, 270, 399-404.	1.0	7
216	Critical molecular weight for block copolymer reinforcement of interfaces in a two-phase polymer blend. Macromolecules, 1991, 24, 1846-1853.	2,2	173

#		Article	lF	CITATIONS
21	17	A micromechanical model of crack growth along polymer interfaces. Mechanics of Materials, 1991, 11, 257-268.	1.7	76
21	18	Secondary Current Distribution in a Hull Cell: Boundary Element and Finite Element Simulation and Experimental Verification. Journal of the Electrochemical Society, 1987, 134, 3015-3021.	1.3	50