
Wei Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/247989/publications.pdf Version: 2024-02-01

WELLANC

#	Article	IF	CITATIONS
1	Facile Fabrication of Magnetic Chitosan Beads of Fast Kinetics and High Capacity for Copper Removal. ACS Applied Materials & Interfaces, 2014, 6, 3421-3426.	8.0	138
2	Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal. Journal of Hazardous Materials, 2014, 276, 295-301.	12.4	77
3	Spherical polystyrene-supported nano-Fe3O4 of high capacity and low-field separation for arsenate removal from water. Journal of Hazardous Materials, 2012, 243, 319-325.	12.4	70
4	Polylactic Acid Nonwoven Fabric Surface Modified with Stereocomplex Crystals for Recyclable Use in Oil/Water Separation. ACS Applied Polymer Materials, 2020, 2, 2509-2516.	4.4	30
5	Oriented Assembly of Anisotropic Nanosheets into Ultrathin Flowerlike Superstructures for Energy Storage. ACS Nano, 2021, 15, 2707-2718.	14.6	28
6	Green synthesis of enantiomerically pure l-lactide and d-lactide using biogenic creatinine catalyst. Polymer Degradation and Stability, 2014, 101, 18-23.	5.8	24
7	Rational design of a zwitterionic–phosphonic copolymer for the surface antifouling modification of multiple biomedical metals. Journal of Materials Chemistry B, 2019, 7, 4055-4065.	5.8	24
8	Humid Bonding with a Waterâ€Soluble Adhesive Inspired by Mussels and Sandcastle Worms. Macromolecular Chemistry and Physics, 2015, 216, 450-459.	2.2	21
9	Efficient Synthesis of Lactide with Low Racemization Catalyzed by Sodium Bicarbonate and Zinc Lactate. ACS Sustainable Chemistry and Engineering, 2020, 8, 2865-2873.	6.7	21
10	A transient polymorph transition of 4-cyano-4′-octyloxybiphenyl (8OCB) revealed by ultrafast differential scanning calorimetry (UFDSC). Soft Matter, 2013, 9, 1488-1491.	2.7	19
11	Mechanism of the Significant Acceleration of Polyethylene Terephthalate Glycolysis by Defective Ultrathin ZnO Nanosheets with Heteroatom Doping. ACS Sustainable Chemistry and Engineering, 2022, 10, 5476-5488.	6.7	15
12	Isotactic polycondensation of l-lactic acid with biogenic creatinine. Polymer, 2012, 53, 5476-5479.	3.8	13
13	Efficient glycolysis of PET catalyzed by a metal-free phosphazene base: the important role of EG ^{â°'} . Green Chemistry, 2022, 24, 1294-1301.	9.0	13
14	Enthalpy Relaxation near the Glass Transition of Polystyrenes with Controlled Interchain Proximity. Macromolecules, 2008, 41, 5356-5360.	4.8	11
15	Controlled Synthesis of <scp>l</scp> -Lactide Using Sn-Beta Zeolite Catalysts in a One-Step Route. Industrial & Engineering Chemistry Research, 2021, 60, 13534-13541.	3.7	11
16	A Novel Branched Polyoxymethylene Synthesized by Cationic Copolymerization of 1,3,5â€⊺rioxane with 3â€(Alkoxymethyl)â€3â€ethyloxetane. Macromolecular Chemistry and Physics, 2013, 214, 2752-2760.	2.2	8
17	Polythiophene with oligopeptide side chain: preparation and nano-structure. Supramolecular Chemistry, 2013, 25, 842-847.	1.2	6
18	Synthesis, characterization and thermal properties of polystyrene–poly(lactic acid)–polystyrene triblock copolymer via atom transfer radical polymerization. Journal of Thermoplastic Composite Materials, 2014, 27, 1074-1084.	4.2	5

Wei Jiang

#	Article	IF	CITATIONS
19	Synthesis and thermal properties of poly(methyl methacrylate)â€poly(<scp>L</scp> â€lactic) Tj ETQq1 1 0.78431 3905-3911.	.4 rgBT /C 2.6	Overlock 10 Ti 4
20	Nanostructure Control of a Regioregular Poly(3-alkylthiophene) Using an Oligopeptide Side Chain. Macromolecules, 2020, 53, 6087-6098.	4.8	2
21	Direct synthesis of lactide from concentrated lactic acid catalyzed by hierarchical Sn-beta zeolite. Scientia Sinica Chimica, 2022, 52, 1127-1139.	0.4	2
22	One‣tep Synthesis of Biodegradable Polyurethane Prepolymer and Its Rapid Gelation Behavior at High Water Content. Macromolecular Chemistry and Physics, 2017, 218, 1600369.	2.2	1
23	PLA-based core-shell structure stereocomplexed nanoparticles with enhanced loading and release profile of paclitaxel. Frontiers in Bioscience, 2021, 26, 517.	2.1	1
24	Structural Relaxation of Polystyrene Glasses with Disâ€interpenetrated Chains Studied by Differential Scanning Calorimetry. Journal of Macromolecular Science - Physics, 2008, 47, 794-799.	1.0	0