Bo Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2479818/publications.pdf

Version: 2024-02-01

434195 430874 1,661 31 18 31 citations h-index g-index papers 41 41 41 1327 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Palladium-Catalyzed Benzylic Addition of 2-Methyl Azaarenes to $\langle i \rangle N \langle i \rangle$ -Sulfonyl Aldimines via Câ^'H Bond Activation. Journal of the American Chemical Society, 2010, 132, 3650-3651.	13.7	259
2	Palladium-Catalyzed Oxidative Carbonylation of Benzylic C–H Bonds via Nondirected C(sp ³)–H Activation. Journal of the American Chemical Society, 2012, 134, 9902-9905.	13.7	247
3	lron-Catalyzed Direct Alkenylation of 2-Substituted Azaarenes with ⟨i⟩N⟨/i⟩-Sulfonyl Aldimines via C–H Bond Activation. Organic Letters, 2011, 13, 2580-2583.	4.6	172
4	Iron-Catalyzed Carboamination of Olefins: Synthesis of Amines and Disubstituted \hat{l}^2 -Amino Acids. Journal of the American Chemical Society, 2017, 139, 13076-13082.	13.7	131
5	Lewis Acidâ€Catalyzed CH Functionalization for Synthesis of Isoindolinones and Isoindolines. Advanced Synthesis and Catalysis, 2010, 352, 3195-3200.	4.3	115
6	Ironâ€Catalyzed Decarboxylative Alkyl Etherification of Vinylarenes with Aliphatic Acids as the Alkyl Source. Angewandte Chemie - International Edition, 2017, 56, 3650-3654.	13.8	112
7	Brønsted Acid Enhanced Rhodiumâ€Catalyzed Conjugate Addition of Aryl CH Bonds to α,βâ€Unsaturated Ketones under Mild Conditions. Chemistry - A European Journal, 2012, 18, 9511-9515.	3.3	95
8	Copper-Catalyzed Regioselective 1,2-Alkylesterification of Dienes to Allylic Esters. Organic Letters, 2016, 18, 392-395.	4.6	64
9	Copper-Catalyzed Ligand-Free Diazidation of Olefins with TMSN ₃ in CH ₃ CN or in H ₂ O. Organic Letters, 2017, 19, 6120-6123.	4.6	60
10	Lewis Acidâ€Catalyzed Conjugate Addition of <i>sp</i> ³ CH Bonds to Methylenemalononitriles. Advanced Synthesis and Catalysis, 2012, 354, 2146-2150.	4.3	56
11	Cooperative Catalysis with Aldehydes and Copper: Development and Application in Aerobic Oxidative CH Amination at Room Temperature. Advanced Synthesis and Catalysis, 2013, 355, 1315-1322.	4.3	43
12	Cu-catalyzed direct C–H amination of 2-alkylazaarenes with azodicarboxylates via nucleophilic addition. Tetrahedron Letters, 2013, 54, 711-714.	1.4	41
13	Iron-Catalyzed Dehydrative Alkylation of Propargyl Alcohol with Alkyl Peroxides To Form Substituted 1,3-Enynes. Organic Letters, 2018, 20, 3202-3205.	4.6	40
14	Iron(II)-Catalyzed Heck-Type Coupling of Vinylarenes with Alkyl Iodides. Organic Letters, 2019, 21, 776-779.	4.6	29
15	Iron-Catalyzed Decarboxylative Alkyl Etherification of Vinylarenes with Aliphatic Acids as the Alkyl Source. Angewandte Chemie, 2017, 129, 3704-3708.	2.0	26
16	Iodine/Manganese Dual Catalysis for Oxidative Dehydrogenation Coupling of Amines with Thiols. Organic Letters, 2019, 21, 7722-7725.	4.6	22
17	Catalytic cross deoxygenative and dehydrogenative coupling of aldehydes and alkenes: a redox-neutral process to produce skipped dienes. Chemical Communications, 2013, 49, 9839.	4.1	21
18	lodine/Manganese Catalyzed Sulfenylation of Indole via Dehydrogenative Oxidative Coupling in Anisole. Advanced Synthesis and Catalysis, 2020, 362, 2666-2671.	4.3	17

#	Article	IF	Citations
19	Ironâ€Catalyzed Alkenylation of Isochroman Acetals with Simple Alkenes. ChemCatChem, 2015, 7, 250-253.	3.7	15
20	A Metal-Free Approach for BrÃ,nsted Acid Promoted C–H AlkylÂation of Heteroarenes with Alkyl Peroxides. Synthesis, 2018, 50, 3250-3256.	2.3	11
21	Ironâ€Catalyzed Vinylic Câ^'H Alkylation with Alkyl Peroxides. Chemistry - an Asian Journal, 2018, 13, 2522-2528.	3.3	9
22	Nickel-catalyzed oxidative dehydrogenative coupling of alkane with thiol for C(sp3)-S bond formation. Tetrahedron Letters, 2021, 68, 152950.	1.4	9
23	Copper-catalyzed diesterification of 1,3-diene for the synthesis of allylic diester compounds. Tetrahedron Letters, 2016, 57, 3400-3403.	1.4	7
24	Protection of COOH and OH groups in acid, base and salt free reactions. Green Chemistry, 2018, 20, 1444-1447.	9.0	7
25	Silver-Catalyzed Olefination of Acetals and Ketals with Diazoesters to Î ² -Alkoxyacrylates. Organic Letters, 2018, 20, 7090-7094.	4.6	6
26	Palladium-catalyzed dearomative cyclocarbonylation of allyl alcohol for the synthesis of quinolizinones. Organic and Biomolecular Chemistry, 2021, 19, 1274-1277.	2.8	4
27	Palladium-Catalyzed Tandem Hydrocarbonylative Lactamization and Cycloaddition Reaction for the Construction of Bridged Polycyclic Lactams. Organic Letters, 2022, 24, 147-151.	4.6	4
28	Selective oxidative intermolecular carbosulphenylation of aryl alkenes with thiols and nucleophiles via a 1,2-dithioethane intermediate. Chemical Communications, 2021, 57, 7533-7536.	4.1	3
29	A General Method for the Dibromination of Vicinal sp ³ C–H Bonds Exploiting Weak Solvent–Substrate Noncovalent Interactions. Organic Letters, 2021, 23, 2399-2404.	4.6	3
30	A Novel One-Pot, Three-Component Synthesis of 5-lmino-2,3,5,8-tetrahydropyrazolo[1,2-a]pyridazin-1-one Derivatives. Synthesis, 2009, 2009, 1689-1693.	2.3	2
31	Continuous Flow Microreactor Promoted the Catalytic N-Oxidation Reaction of Pyridine Derivatives. Synthesis, 0, , .	2.3	1