

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2479226/publications.pdf Version: 2024-02-01

VI DEN

#	Article	IF	CITATIONS
1	Specific labelling of phagosome-derived vesicles in macrophages with a membrane dye delivered with microfabricated microparticles. Acta Biomaterialia, 2022, 141, 344-353.	8.3	4
2	Myelin Debris Stimulates NG2/CSPG4 Expression in Bone Marrow-Derived Macrophages in the Injured Spinal Cord. Frontiers in Cellular Neuroscience, 2021, 15, 651827.	3.7	13
3	For Better or for Worse: A Look Into Neutrophils in Traumatic Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2021, 15, 648076.	3.7	35
4	circAMOTL1 Motivates AMOTL1 Expression to Facilitate Cervical Cancer Growth. Molecular Therapy - Nucleic Acids, 2020, 19, 50-60.	5.1	62
5	Human papillomavirus type 16 E7 oncoprotein-induced upregulation of lysine-specific demethylase 5A promotes cervical cancer progression by regulating the microRNA-424–5p/suppressor of zeste 12 pathway. Experimental Cell Research, 2020, 396, 112277.	2.6	8
6	HPV16 E6 oncoproteinâ€induced upregulation of lncRNA GABPB1â€AS1 facilitates cervical cancer progression by regulating miRâ€519eâ€5p/Notch2 axis. FASEB Journal, 2020, 34, 13211-13223.	0.5	17
7	Conjugating Micropatches to Living Cells Through Membrane Intercalation. ACS Applied Materials & Interfaces, 2020, 12, 29110-29121.	8.0	3
8	circRNA-AKT1 Sequesters miR-942-5p to Upregulate AKT1 and Promote Cervical Cancer Progression. Molecular Therapy - Nucleic Acids, 2020, 20, 308-322.	5.1	54
9	Smad4 promotes diabetic nephropathy by modulating glycolysis and <scp>OXPHOS</scp> . EMBO Reports, 2020, 21, e48781.	4.5	39
10	Hsa_circ_0048179 attenuates free fatty acid-induced steatosis via hsa_circ_0048179/miR-188-3p/GPX4 signaling. Aging, 2020, 12, 23996-24008.	3.1	22
11	HPV16 E7â€induced upregulation of KDM2A promotes cervical cancer progression by regulating miRâ€132–radixin pathway. Journal of Cellular Physiology, 2019, 234, 2659-2671.	4.1	26
12	Combined Blockade of Smad3 and JNK Pathways Ameliorates Progressive Fibrosis in Folic Acid Nephropathy. Frontiers in Pharmacology, 2019, 10, 880.	3.5	20
13	Microvascular endothelial cells engulf myelin debris and promote macrophage recruitment and fibrosis after neural injury. Nature Neuroscience, 2019, 22, 421-435.	14.8	150
14	Abrogation of Endogenous Glycolipid Antigen Presentation on Myelin-Laden Macrophages by D-Sphingosine Ameliorates the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2019, 10, 404.	4.8	3
15	Long non-coding RNA RP11-552M11.4 favors tumorigenesis and development of cervical cancer via modulating miR-3941/ATF1 signaling. International Journal of Biological Macromolecules, 2019, 130, 24-33.	7.5	17
16	Activating Adiponectin Signaling with Exogenous AdipoRon Reduces Myelin Lipid Accumulation and Suppresses Macrophage Recruitment after Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 903-918.	3.4	28
17	FLT3L and granulocyte macrophage colony-stimulating factor enhance the anti-tumor and immune effects of an HPV16 E6/E7 vaccine. Aging, 2019, 11, 11893-11904.	3.1	2
18	An hPSC-Derived Tissue-Resident Macrophage Model Reveals Differential Responses of Macrophages to ZIKV and DENV Infection. Stem Cell Reports, 2018, 11, 348-362.	4.8	32

YI REN

#	Article	IF	CITATIONS
19	Integrin β3/Akt signaling contributes to platelet-induced hemangioendothelioma growth. Scientific Reports, 2017, 7, 6455.	3.3	7
20	Poly(dopamine)-modified carbon nanotube multilayered film and its effects on macrophages. Carbon, 2017, 113, 176-191.	10.3	34
21	In Vitro Phagocytosis of Myelin Debris by Bone Marrow-Derived Macrophages. Journal of Visualized Experiments, 2017, , .	0.3	23
22	Neural Stem Cell-Conditioned Medium Suppresses Inflammation and Promotes Spinal Cord Injury Recovery. Cell Transplantation, 2017, 26, 469-482.	2.5	43
23	Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury. International Journal of Molecular Sciences, 2016, 17, 1380.	4.1	80
24	Spinal Microgliosis Due to Resident Microglial Proliferation Is Required for Pain Hypersensitivity after Peripheral Nerve Injury. Cell Reports, 2016, 16, 605-614.	6.4	187
25	Multiple organ dysfunction and systemic inflammation after spinal cord injury: a complex relationship. Journal of Neuroinflammation, 2016, 13, 260.	7.2	141
26	Catalase-Laden Microdevices for Cell-Mediated Enzyme Delivery. Langmuir, 2016, 32, 13386-13393.	3.5	14
27	Rescuing macrophage normal function in spinal cord injury with embryonic stem cell conditioned media. Molecular Brain, 2016, 9, 48.	2.6	45
28	Bioinformatic analysis reveals the expression of unique transcriptomic signatures in Zika virus infected human neural stem cells. Cell and Bioscience, 2016, 6, 42.	4.8	51
29	Rapid Identification and Characterization of Francisella by Molecular Biology and Other Techniques. Open Microbiology Journal, 2016, 10, 64-77.	0.7	3
30	Sphingolipids in spinal cord injury. International Journal of Physiology, Pathophysiology and Pharmacology, 2016, 8, 52-69.	0.8	14
31	The Smad3/Smad4/CDK9 complex promotes renal fibrosis in mice with unilateral ureteral obstruction. Kidney International, 2015, 88, 1323-1335.	5.2	18
32	Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance. Kidney International, 2015, 88, 286-298.	5.2	39
33	Macrophages in spinal cord injury: Phenotypic and functional change from exposure to myelin debris. Glia, 2015, 63, 635-651.	4.9	209
34	Macrophage cell death upon intracellular bacterial infection. Macrophage, 2015, 2, e779.	1.0	10
35	Embryonic Stem Cells Promoting Macrophage Survival and Function are Crucial for Teratoma Development. Frontiers in Immunology, 2014, 5, 275.	4.8	28
36	Function of microglia and macrophages in secondary damage after spinal cord injury. Neural Regeneration Research, 2014, 9, 1787.	3.0	212

YI REN

#	Article	IF	CITATIONS
37	Regulation of Renal Fibrosis by Smad3 Thr388 Phosphorylation. American Journal of Pathology, 2014, 184, 944-952.	3.8	24
38	Myelin Basic Protein Induces Neuron-Specific Toxicity by Directly Damaging the Neuronal Plasma Membrane. PLoS ONE, 2014, 9, e108646.	2.5	24
39	Managing Inflammation after Spinal Cord Injury through Manipulation of Macrophage Function. Neural Plasticity, 2013, 2013, 1-9.	2.2	92
40	MIF Produced by Bone Marrow–Derived Macrophages Contributes to Teratoma Progression after Embryonic Stem Cell Transplantation. Cancer Research, 2012, 72, 2867-2878.	0.9	40
41	Myelin Activates FAK/Akt/NF-κB Pathways and Provokes CR3-Dependent Inflammatory Response in Murine System. PLoS ONE, 2010, 5, e9380.	2.5	99
42	Apoptotic Cells Protect Mice against Lipopolysaccharide-Induced Shock. Journal of Immunology, 2008, 180, 4978-4985.	0.8	125
43	Upregulation of macrophage migration inhibitory factor contributes to induced N-Myc expression by the activation of ERK signaling pathway and increased expression of interleukin-8 and VEGF in neuroblastoma. Oncogene, 2004, 23, 4146-4154.	5.9	84
44	The use of proteomics in the discovery of serum biomarkers from patients with severe acute respiratory syndrome. Proteomics, 2004, 4, 3477-3484.	2.2	52
45	Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis and Rheumatism, 2003, 48, 2888-2897.	6.7	300
46	Nonphlogistic Clearance of Late Apoptotic Neutrophils by Macrophages: Efficient Phagocytosis Independent of β2 Integrins. Journal of Immunology, 2001, 166, 4743-4750.	0.8	101
47	Apoptosis: The importance of being eaten. Cell Death and Differentiation. 1998. 5. 563-568.	11.2	326