Qingtang Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2478035/publications.pdf

Version: 2024-02-01

361413 377865 1,401 71 20 34 citations h-index g-index papers 72 72 72 476 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A chirplet transform-based mode retrieval method for multicomponent signals with crossover instantaneous frequencies., 2022, 120, 103262.		17
2	Instantaneous Frequency-Embedded Synchrosqueezing Transform for Signal Separation. Frontiers in Applied Mathematics and Statistics, 2022, 8 , .	1.3	2
3	A new nonlocal low-rank regularization method with applications to magnetic resonance image denoising. Inverse Problems, 2022, 38, 065012.	2.0	5
4	Direct Signal Separation via Extraction of Local Frequencies With Adaptive Time-Varying Parameters. IEEE Transactions on Signal Processing, 2022, 70, 2321-2333.	5.3	7
5	Deep-learning Hopping Capture Model for Automatic Modulation Classification of Wireless Communication Signals. IEEE Transactions on Aerospace and Electronic Systems, 2022, , 1-12.	4.7	10
6	Synchrosqueezing transform meets <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>$\hat{1}$</mml:mi></mml:math> -stable distribution: An adaptive fractional lower-order SST for instantaneous frequency estimation and non-stationary signal recovery. Signal Processing, 2022, , 108683.	3.7	6
7	Analysis of adaptive short-time Fourier transform-based synchrosqueezing transform. Analysis and Applications, 2021, 19, 71-105.	2.2	18
8	Correspondence between multiwavelet shrinkage and nonlinear diffusion. Journal of Computational and Applied Mathematics, 2021, 382, 113074.	2.0	5
9	A NONLOCAL LOW-RANK REGULARIZATION METHOD FOR FRACTAL IMAGE CODING. Fractals, 2021, 29, 2150125.	3.7	5
10	Signal separation based on adaptive continuous wavelet-like transform and analysis. Applied and Computational Harmonic Analysis, 2021, 53, 151-179.	2.2	17
11	Nonlocal low-rank regularized two-phase approach for mixed noise removal. Inverse Problems, 2021, 37, 085001.	2.0	11
12	Rician noise removal via weighted nuclear norm penalization. Applied and Computational Harmonic Analysis, 2021, 53, 180-198.	2.2	8
13	Time-scale-chirp_rate operator for recovery of non-stationary signal components with crossover instantaneous frequency curves. Applied and Computational Harmonic Analysis, 2021, 54, 323-344.	2.2	21
14	Analysis of an adaptive short-time Fourier transform-based multicomponent signal separation method derived from linear chirp local approximation. Journal of Computational and Applied Mathematics, 2021, 396, 113607.	2.0	18
15	Adaptive synchrosqueezing transform with a time-varying parameter for non-stationary signal separation. Applied and Computational Harmonic Analysis, 2020, 49, 1075-1106.	2.2	46
16	Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation. Signal Processing, 2020, 166, 107231.	3.7	106
17	Twoâ€sample test based on classification probability. Statistical Analysis and Data Mining, 2020, 13, 5-13.	2.8	4
18	Analysis of adaptive synchrosqueezing transform with a time-varying parameter. Advances in Computational Mathematics, 2020, 46, 1.	1.6	11

#	Article	IF	Citations
19	Rician Noise Removal via a Learned Dictionary. Mathematical Problems in Engineering, 2019, 2019, 1-13.	1.1	5
20	An empirical signal separation algorithm for multicomponent signals based on linear time-frequency analysis. Mechanical Systems and Signal Processing, 2019, 121, 791-809.	8.0	22
21	A Tree-Based Multiscale Regression Method. Frontiers in Applied Mathematics and Statistics, 2018, 4, .	1.3	0
22	Time-varying Parameter-based Synchrosqueezing Wavelet Transform with the Approximation of Cubic Phase Functions. , $2018, , .$		3
23	Highly symmetric3-refinement Bi-frames for surface multiresolution processing. Applied Numerical Mathematics, 2017, 118, 1-18.	2.1	6
24	Image Restoration: Wavelet Frame Shrinkage, Nonlinear Evolution PDEs, and Beyond. Multiscale Modeling and Simulation, 2017, 15, 606-660.	1.6	43
25	Instantaneous frequency estimation based on synchrosqueezing wavelet transform. Signal Processing, 2017, 138, 167-181.	3.7	79
26	Symmetric canonical quincunx tight framelets with high vanishing moments and smoothness. Mathematics of Computation, 2017, 87, 347-379.	2.1	21
27	Tangents and curvatures of matrix-valued subdivision curves and their applications to curve design. Applicable Analysis, 2016, 95, 1671-1699.	1.3	0
28	Sparse representations with applications in imaging science, data analysis and beyond. Applied and Computational Harmonic Analysis, 2016, 41, 1-3.	2.2	0
29	Multiscale representation of surfaces by tight wavelet frames with applications to denoising. Applied and Computational Harmonic Analysis, 2016, 41, 561-589.	2.2	21
30	Tight wavelet frames in low dimensions with canonical filters. Journal of Approximation Theory, 2015, 196, 55-78.	0.8	8
31	Applied Mathematics., 2013, , .		16
32	Quad/triangle subdivision, nonhomogeneous refinement equation and polynomial reproduction. Mathematics and Computers in Simulation, 2012, 82, 2215-2237.	4.4	2
33	Correspondence between frame shrinkage and high-order nonlinear diffusion. Applied Numerical Mathematics, 2012, 62, 51-66.	2.1	6
34	Highly symmetric bi-frames for triangle surface multiresolution processing. Applied and Computational Harmonic Analysis, 2011, 31, 370-391.	2.2	10
35	Biorthogonal wavelets with 4-fold axial symmetry for quadrilateral surface multiresolution processing. Advances in Computational Mathematics, 2011, 34, 127-165.	1.6	13
36	Wavelet bi-frames with uniform symmetry for curve multiresolution processing. Journal of Computational and Applied Mathematics, 2011, 235, 1653-1675.	2.0	9

#	Article	IF	Citations
37	BIORTHOGONAL WAVELETS WITH SIX-FOLD AXIAL SYMMETRY FOR HEXAGONAL DATA AND TRIANGLE SURFACE MULTIRESOLUTION PROCESSING. International Journal of Wavelets, Multiresolution and Information Processing, 2011, 09, 773-812.	1.3	13
38	Bi-frames with 4-fold axial symmetry for quadrilateral surface multiresolution processing. Journal of Computational and Applied Mathematics, 2010, 234, 3303-3325.	2.0	7
39	Hexagonal tight frame filter banks with idealized high-pass filters. Advances in Computational Mathematics, 2009, 31, 215-236.	1.6	7
40	Matrix-valued 4-point spline and 3-point non-spline interpolatory curve subdivision schemes. Computer Aided Geometric Design, 2009, 26, 797-809.	1.2	1
41	Interpolatory quad/triangle subdivision schemes for surface design. Computer Aided Geometric Design, 2009, 26, 904-922.	1.2	9
42	Orthogonal and Biorthogonal \$sqrt 3\$-Refinement Wavelets for Hexagonal Data Processing. IEEE Transactions on Signal Processing, 2009, 57, 4304-4313.	5.3	5
43	xmins:xocs="nttp://www.eisevier.com/xmi/xocs/dtd" xmins:xs="nttp://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" in the state of	1.0	7
44	From extension of Loop's approximation scheme to interpolatory subdivisions. Computer Aided Geometric Design, 2008, 25, 96-115.	1.2	12
45	Orthogonal and Biorthogonal FIR Hexagonal Filter Banks With Sixfold Symmetry. IEEE Transactions on Signal Processing, 2008, 56, 5861-5873.	5.3	11
46	Compactly Supported Orthogonal and Biorthogonal \$sqrt 5\$-Refinement Wavelets With 4-Fold Symmetry. IEEE Transactions on Image Processing, 2008, 17, 2053-2062.	9.8	1
47	FIR Filter Banks for Hexagonal Data Processing. IEEE Transactions on Image Processing, 2008, 17, 1512-1521.	9.8	10
48	Fourier transform of Bernstein–Bézier polynomials. Journal of Mathematical Analysis and Applications, 2007, 325, 294-304.	1.0	0
49	Matrix-valued subdivision schemes for generating surfaces with extraordinary vertices. Computer Aided Geometric Design, 2006, 23, 419-438 Refinable bivariate quartic and quintic xmmi:math altimg="si25.gif" overflow="scroll"	1.2	11
50	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	2.0	6
51	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.else. Journal Matrix-valued symmetric templates for interpolatory surface subdivisions. Applied and Computational Harmonic Analysis, 2005, 19, 303-339.	2.2	21
52	Balanced multi-wavelets in \$mathbb R^s\$. Mathematics of Computation, 2004, 74, 1323-1345.	2.1	30
53	Refinable bivariate quartic C^2 -splines for multi-level data representation and surface display. Mathematics of Computation, 2004, 74, 1369-1391.	2.1	7
54	Parameterizations of Masks for Tight Affine Frames with Two Symmetric/Antisymmetric Generators. Advances in Computational Mathematics, 2003, 18, 247-268.	1.6	52

#	Article	IF	CITATIONS
55	Triangular 3-subdivision schemes: the regular case. Journal of Computational and Applied Mathematics, 2003, 156, 47-75.	2.0	34
56	Surface subdivision schemes generated by refinable bivariate spline function vectors. Applied and Computational Harmonic Analysis, 2003, 15, 147-162.	2.2	33
57	Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets. SIAM Journal on Matrix Analysis and Applications, 2003, 24, 1071-1109.	1.4	70
58	Symmetric Paraunitary Matrix Extension and Parametrization of Symmetric Orthogonal Multifilter Banks. SIAM Journal on Matrix Analysis and Applications, 2001, 23, 167-186.	1.4	11
59	Convergence of cascade algorithms associated with nonhomogeneous refinement equations. Proceedings of the American Mathematical Society, 2000, 129, 415-427.	0.8	20
60	Construction of Biorthogonal Multiwavelets Using the Lifting Scheme. Applied and Computational Harmonic Analysis, 2000, 9, 336-352.	2.2	50
61	Parametrizations of symmetric orthogonal multifilter banks with different filter lengths. Linear Algebra and Its Applications, 2000, 311, 79-96.	0.9	11
62	Distributional Solutions of Nonhomogeneous Discrete and Continuous Refinement Equations. SIAM Journal on Mathematical Analysis, 2000, 32, 420-434.	1.9	27
63	On Existence and Weak Stability of Matrix Refinable Functions. Constructive Approximation, 1999, 15, 337-353.	3.0	50
64	Multivariate matrix refinable functions with arbitrary matrix dilation. Transactions of the American Mathematical Society, 1999, 351, 2407-2438.	0.9	87
65	Admissible wavelets on the Siegel domain of type one. Science in China Series A: Mathematics, 1998, 41, 897-909.	0.5	3
66	On the Regularity of Matrix Refinable Functions. SIAM Journal on Mathematical Analysis, 1998, 29, 1157-1176.	1.9	61
67	Orthogonal multiwavelets with optimum time-frequency resolution. IEEE Transactions on Signal Processing, 1998, 46, 830-844.	5.3	63
68	On the design of multifilter banks and orthonormal multiwavelet bases. IEEE Transactions on Signal Processing, 1998, 46, 3292-3303.	5.3	71
69	Phase space, wavelet transform and Toeplitz-Hankel type operators. Israel Journal of Mathematics, 1995, 89, 157-171.	0.8	3
70	Toeplitz and Hankel type operators on an annulus. Mathematika, 1994, 41, 266-276.	0.5	0
71	Toeplitz and Hankel type operators on the upper half-plane. Integral Equations and Operator Theory, 1992, 15, 744-767.	0.8	16