Volker Deckert

List of Publications by Citations

Source: https://exaly.com/author-pdf/2477939/volker-deckert-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

168
papers9,484
citations46
h-index94
g-index193
ext. papers10,950
ext. citations6.2
avg, IF6.24
L-index

#	Paper	IF	Citations
168	Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. <i>Chemical Physics Letters</i> , 2000 , 318, 131-136	2.5	1225
167	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117	16.7	1000
166	Scanning near-field optical microscopy with aperture probes: Fundamentals and applications. <i>Journal of Chemical Physics</i> , 2000 , 112, 7761-7774	3.9	545
165	Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. <i>Nature Nanotechnology</i> , 2012 , 7, 583-6	28.7	489
164	Tip-enhanced Raman scattering. <i>Chemical Society Reviews</i> , 2008 , 37, 921-30	58.5	344
163	Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 1658-61	16.4	262
162	High-quality near-field optical probes by tube etching. <i>Applied Physics Letters</i> , 1999 , 75, 160-162	3.4	243
161	Surface- and tip-enhanced Raman scattering of DNA components. <i>Journal of Raman Spectroscopy</i> , 2006 , 37, 311-317	2.3	174
160	Towards a detailed understanding of bacterial metabolismspectroscopic characterization of Staphylococcus epidermidis. <i>ChemPhysChem</i> , 2007 , 8, 124-37	3.2	167
159	Near-Field Surface-Enhanced Raman Imaging of Dye-Labeled DNA with 100-nm Resolution. <i>Analytical Chemistry</i> , 1998 , 70, 2646-50	7.8	158
158	On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. <i>ChemPhysChem</i> , 2006 , 7, 1428-30	3.2	155
157	Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus. <i>Journal of Raman Spectroscopy</i> , 2009 , 40, 240-243	2.3	147
156	Tip-enhanced Raman spectroscopy - from early developments to recent advances. <i>Chemical Society Reviews</i> , 2017 , 46, 4077-4110	58.5	139
155	Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. <i>Chemical Physics Letters</i> , 1998 , 283, 381-385	2.5	128
154	Structure and composition of insulin fibril surfaces probed by TERS. <i>Journal of the American Chemical Society</i> , 2012 , 134, 13323-9	16.4	127
153	Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. <i>Nano Letters</i> , 2011 , 11, 1868-73	11.5	113
152	Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. <i>Analyst, The</i> , 2013 , 138, 1665-73	5	109

151	Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception. <i>Chemical Society Reviews</i> , 2017 , 46, 3922-3944	58.5	108
150	Nanoscale atmospheric pressure laser ablation-mass spectrometry. <i>Analytical Chemistry</i> , 2001 , 73, 1399	- 4 .882	101
149	Ultraflat transparent gold nanoplatesideal substrates for tip-enhanced Raman scattering experiments. <i>Small</i> , 2009 , 5, 432-6	11	97
148	A classical description of subnanometer resolution by atomic features in metallic structures. <i>Nanoscale</i> , 2017 , 9, 391-401	7.7	95
147	Towards a specific characterisation of components on a cell surfacellombined TERS-investigations of lipids and human cells. <i>Journal of Raman Spectroscopy</i> , 2009 , 40, 1452-1457	2.3	90
146	Distinction of nucleobases - a tip-enhanced Raman approach. <i>Beilstein Journal of Nanotechnology</i> , 2011 , 2, 628-37	3	83
145	Tip-Enhanced Raman Imaging of Single-Stranded DNA with Single Base Resolution. <i>Journal of the American Chemical Society</i> , 2019 , 141, 753-757	16.4	81
144	Scanning Multichannel Technique for Improved Spectrochemical Measurements with a CCD Camera and its Application to Raman Spectroscopy. <i>Applied Spectroscopy</i> , 1992 , 46, 322-328	3.1	79
143	Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering. <i>Journal of Biophotonics</i> , 2012 , 5, 215-9	3.1	78
142	Single molecule level plasmonic catalysis la dilution study of p-nitrothiophenol on gold dimers. <i>Chemical Communications</i> , 2015 , 51, 3069-72	5.8	75
141	Amyloids: From molecular structure to mechanical properties. <i>Polymer</i> , 2013 , 54, 2473-2488	3.9	69
140	Advances in TERS (tip-enhanced Raman scattering) for biochemical applications. <i>Biochemical Society Transactions</i> , 2012 , 40, 609-14	5.1	67
139	Optical Spectroscopy and Laser Desorption on a Nanometer Scale. <i>Analytical Chemistry</i> , 1997 , 69, 749-7	5⁄4 8	64
138	Laterally resolved and direct spectroscopic evidence of nanometer-sized lipid and protein domains on a single cell. <i>Small</i> , 2011 , 7, 209-14	11	63
137	Biochemical imaging below the diffraction limitprobing cellular membrane related structures by tip-enhanced Raman spectroscopy (TERS). <i>Journal of Biophotonics</i> , 2010 , 3, 455-61	3.1	62
136	Impact of fixation on in vitro cell culture lines monitored with Raman spectroscopy. <i>Analyst, The</i> , 2009 , 134, 1154-61	5	61
135	Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS). <i>Biophysical Journal</i> , 2014 , 106, 263-71	2.9	60
134	Bioanalytical application of surface- and tip-enhanced Raman spectroscopy. <i>Engineering in Life Sciences</i> , 2012 , 12, 131-143	3.4	60

133	Cell wall investigations utilizing tip-enhanced Raman scattering. Journal of Microscopy, 2008, 229, 533-9	9 1.9	60
132	New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy. <i>Analytical and Bioanalytical Chemistry</i> , 2005 , 381, 165-72	4.4	60
131	Nanoscale Heterogeneity of the Molecular Structure of Individual hIAPP Amyloid Fibrils Revealed with Tip-Enhanced Raman Spectroscopy. <i>Small</i> , 2015 , 11, 4131-9	11	59
130	Controlled Formation of Isolated Silver Islands for Surface-Enhanced Raman Scattering. <i>Applied Spectroscopy</i> , 2000 , 54, 1577-1583	3.1	59
129	Exploring the Nanoscale: Fifteen Years of Tip-Enhanced Raman Spectroscopy. <i>Applied Spectroscopy</i> , 2015 , 69, 1357-71	3.1	57
128	Tip-enhanced Raman scattering (TERS) of oxidised glutathione on an ultraflat gold nanoplate. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 7360-2	3.6	56
127	Detection of nano-oxidation sites on the surface of hemoglobin crystals using tip-enhanced Raman scattering. <i>Nano Letters</i> , 2012 , 12, 1555-60	11.5	54
126	Aromatic Amino Acid Monolayers Sandwiched between Gold and Silver: A Combined Tip-Enhanced Raman and Theoretical Approach. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 7412-7420	3.8	53
125	Tip-enhanced Raman scattering (TERS) and high-resolution bio nano-analysisa comparison. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 12040-9	3.6	49
124	Characterizing cytochrome c statesTERS studies of whole mitochondria. <i>Chemical Communications</i> , 2011 , 47, 11453-5	5.8	49
123	Spatial resolution of tip-enhanced Raman spectroscopy - DFT assessment of the chemical effect. <i>Nanoscale</i> , 2016 , 8, 10229-39	7.7	49
122	Recent advances in single-molecule sequencing. Current Opinion in Biotechnology, 2010, 21, 4-11	11.4	46
121	Tip-Enhanced Raman Spectroscopy. <i>Journal of Raman Spectroscopy</i> , 2009 , 40, 1336-1337	2.3	45
120	Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils. <i>Scientific Reports</i> , 2016 , 6, 33575	4.9	44
119	Tip-enhanced Raman scattering studies of histidine on novel silver substrates. <i>Journal of Raman Spectroscopy</i> , 2009 , 40, 1446-1451	2.3	43
118	Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device. <i>Analyst, The</i> , 2009 , 134, 38-40	5	42
117	Scanning Near-Field Optical Microscopy and Spectroscopy as a Tool for Chemical Analysis. Angewandte Chemie - International Edition, 2000 , 39, 1746-1756	16.4	42
116	Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2004 , 21, 1362-7	1.8	40

115	Towards in situ Raman Microscopy of Single Catalytic Sites. <i>Applied Spectroscopy</i> , 2002 , 56, 192-199	3.1	40
114	Applications of modern micro-Raman spectroscopy for cell analyses. <i>Integrative Biology (United Kingdom)</i> , 2010 , 2, 94-101	3.7	39
113	Application of principal component analysis to detect outliers and spectral deviations in near-field surface-enhanced Raman spectra. <i>Analytica Chimica Acta</i> , 2001 , 446, 71-83	6.6	39
112	Nanoscale structural analysis using tip-enhanced Raman spectroscopy. <i>Current Opinion in Chemical Biology</i> , 2011 , 15, 719-24	9.7	38
111	Dimer and Trimer in Pyridine-Ethanol Mixture Reinvestigated Applying the Scanning Multi-Channel Raman Difference Technique and AM1 Molecular Orbital Calculations. <i>Journal of Raman Spectroscopy</i> , 1996 , 27, 907-913	2.3	38
110	Spatial resolution in Raman spectroscopy. <i>Faraday Discussions</i> , 2015 , 177, 9-20	3.6	36
109	Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles. <i>Nanoscale</i> , 2015 , 7, 9545-51	7.7	36
108	Looking at the nanoscale: scanning near-field optical microscopy. <i>TrAC - Trends in Analytical Chemistry</i> , 2003 , 22, 70-77	14.6	36
107	Detection of Protein Glycosylation Using Tip-Enhanced Raman Scattering. <i>Analytical Chemistry</i> , 2016 , 88, 2105-12	7.8	34
106	Micro-Raman detection of nuclear membrane lipid fluctuations in senescent epithelial breast cancer cells. <i>Analytical Chemistry</i> , 2010 , 82, 4259-63	7.8	34
105	Laser-Induced Ablation through Nanometer-Sized Tip Apertures: Mechanistic Aspects <i>Journal of Physical Chemistry B</i> , 1997 , 101, 6955-6959	3.4	34
104	Laser-deposited silver island films: an investigation of their structure, optical properties and SERS activity. <i>Journal of Raman Spectroscopy</i> , 1998 , 29, 693-702	2.3	34
103	Label-free monitoring of plasmonic catalysis on the nanoscale. <i>Analyst, The</i> , 2015 , 140, 4325-35	5	33
102	Tip-enhanced Raman scatteringTargeting structure-specific surface characterization for biomedical samples. <i>Advanced Drug Delivery Reviews</i> , 2015 , 89, 42-56	18.5	32
101	Secondary Structure and Glycosylation of Mucus Glycoproteins by Raman Spectroscopies. <i>Analytical Chemistry</i> , 2016 , 88, 11609-11615	7.8	32
100	Tip-Enhanced Raman Spectroscopy of Atmospherically Relevant Aerosol Nanoparticles. <i>Analytical Chemistry</i> , 2016 , 88, 9766-9772	7.8	31
99	Photo-Induced or Plasmon-Induced Reaction: Investigation of the Light-Induced Azo-Coupling of Amino Groups. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 20978-20983	3.8	31
98	A manual and an automatic TERS based virus discrimination. <i>Nanoscale</i> , 2015 , 7, 4545-52	7.7	30

97	Direct molecular-level near-field plasmon and temperature assessment in a single plasmonic hotspot. <i>Light: Science and Applications</i> , 2020 , 9, 35	16.7	29
96	Distinguishing chemical and electromagnetic enhancement in surface-enhanced Raman spectra: The case of para-nitrothiophenol. <i>Journal of Raman Spectroscopy</i> , 2013 , 44, 1497-1505	2.3	28
95	Investigation of the liquid I quid interface with high spatial resolution using near-field Raman spectroscopy. <i>Chemical Physics Letters</i> , 2006 , 417, 452-456	2.5	28
94	Brighter near-field optical probes by means of improving the optical destruction threshold. <i>Journal of Microscopy</i> , 1999 , 194, 378-82	1.9	28
93	Perspectives for spatially resolved molecular spectroscopyRaman on the nanometer scale. <i>Journal of Biophotonics</i> , 2008 , 1, 377-89	3.1	25
92	Sub-wavelength Raman spectroscopy on isolated silver islands. Vibrational Spectroscopy, 2000 , 22, 39-4	82.1	25
91	Protein Handshake on the Nanoscale: How Albumin and Hemoglobin Self-Assemble into Nanohybrid Fibers. <i>ACS Nano</i> , 2018 , 12, 1211-1219	16.7	24
90	Surface-enhanced Raman scattering characteristics of CuO: Mn/Ag heterojunction probed by methyl orange: effect of Mn2+ doping. <i>Journal of Raman Spectroscopy</i> , 2016 , 47, 813-818	2.3	24
89	Isotopic dilution study of self association in (CH3CN+CD3CN) mixture by scanning multichannel Raman difference technique and ab-initio calculations. <i>Chemical Physics Letters</i> , 2000 , 326, 123-128	2.5	24
88	A near-field optical method for probing liquid I quid interfaces. Chemical Physics Letters, 2003, 380, 47-5	5 3 2.5	23
87	The exchange polarization model of photoisomerization: A rationale for profound solvent effects on photoisomerization of trans-stilbene and all-trans retinal. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1996 , 102, 35-38	4.7	23
86	Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies. <i>Ultramicroscopy</i> , 2016 , 165, 26-33	3.1	23
85	Theory of SERS enhancement: general discussion. <i>Faraday Discussions</i> , 2017 , 205, 173-211	3.6	21
84	Nanoscale distinction of membrane patchesa TERS study of Halobacterium salinarum. <i>Journal of Biophotonics</i> , 2012 , 5, 582-91	3.1	21
83	Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 8809-17	3.4	21
82	Local protonation control using plasmonic activation. Chemical Communications, 2014, 50, 11204-7	5.8	20
81	Probing liquid-liquid interfaces with spatially resolved NMR spectroscopy. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 6343-5	16.4	20
80	Vibrational dephasing and the Raman non-coincidence effect of CHBr3 in isotopic dilution. <i>Journal of Raman Spectroscopy</i> , 2000 , 31, 805-811	2.3	20

(2020-2018)

79	Latest instrumental developments and bioanalytical applications in tip-enhanced Raman spectroscopy. <i>TrAC - Trends in Analytical Chemistry</i> , 2018 , 102, 250-258	14.6	19	
78	Uptake of fatty acids by a single endothelial cell investigated by Raman spectroscopy supported by AFM. <i>Analyst, The</i> , 2018 , 143, 970-980	5	19	
77	On the Control of Chromophore Orientation, Supramolecular Structure, and Thermodynamic Stability of an Amphiphilic Pyridyl-Thiazol upon Lateral Compression and Spacer Length Variation. <i>ACS Applied Materials & Description</i> (1988) 44181-44191	9.5	19	
76	Enhancing sensitivity of lateral flow assay with application to SARS-CoV-2. <i>Applied Physics Letters</i> , 2020 , 117, 120601	3.4	19	
75	High resolution spectroscopy reveals fibrillation inhibition pathways of insulin. <i>Scientific Reports</i> , 2016 , 6, 39622	4.9	19	
74	Design and Performance Characteristics of a Near-Infrared Scanning Multichannel Raman Spectrometer. <i>Applied Spectroscopy</i> , 1994 , 48, 933-936	3.1	18	
73	High precision attachment of silver nanoparticles on AFM tips by dielectrophoresis. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 3625-31	4.4	17	
72	Nanoimaging for prion related diseases. <i>Prion</i> , 2010 , 4, 265-74	2.3	17	
71	Transparent silver microcrystals: synthesis and application for nanoscale analysis. <i>Langmuir</i> , 2009 , 25, 6032-4	4	17	
70	Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy. <i>Electrophoresis</i> , 2015 , 36, 1142-8	3.6	16	
69	The chemical effect goes resonant - a full quantum mechanical approach on TERS. <i>Nanoscale</i> , 2020 , 12, 6346-6359	7.7	15	
68	Differences in single and aggregated nanoparticle plasmon spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 2991-5	3.6	15	
67	Separation of CARS image contributions with a Gaussian mixture model. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2010 , 27, 1361-71	1.8	15	
66	Zn2+DNA interactions in aqueous systems: A Raman spectroscopic study. <i>Spectroscopy</i> , 2009 , 23, 155-1	63	15	
65	Plasmon induced polymerization using a TERS approach: a platform for nanostructured 2D/1D material production. <i>Faraday Discussions</i> , 2017 , 205, 213-226	3.6	14	
64	A modified transmission tip-enhanced Raman scattering (TERS) setup provides access to opaque samples. <i>Applied Spectroscopy</i> , 2014 , 68, 916-9	3.1	14	
63	Laser spectroscopic technique for direct identification of a single virus I: FASTER CARS. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 27820-27824	11.5	14	
62	Organic acids, siderophores, enzymes and mechanical pressure for black slate bioweathering with the basidiomycete Schizophyllum commune. <i>Environmental Microbiology</i> , 2020 , 22, 1535-1546	5.2	14	

61	Plasmon response evaluation based on image-derived arbitrary nanostructures. <i>Nanoscale</i> , 2018 , 10, 9830-9839	7.7	14
60	Visualization and characterisation of defined hair follicle compartments by Fourier transform infrared (FTIR) imaging without labelling. <i>Journal of Dermatological Science</i> , 2011 , 63, 191-8	4.3	13
59	Single virus detection by means of atomic force microscopy in combination with advanced image analysis. <i>Journal of Structural Biology</i> , 2014 , 188, 30-8	3.4	12
58	Tip-enhanced Raman scattering for tracking of invasomes in the stratum corneum. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2017 , 1861, 2630-2639	4	12
57	New Device for Raman Difference Spectroscopy with Multichannel and Scanning Multichannel Detection. <i>Applied Spectroscopy</i> , 1997 , 51, 939-943	3.1	12
56	Spitzenverstfikte Raman-Spektroskopie an RNA-Einzelstrfigen: Vorschlag ffleine direkte Sequenzierungsmethode. <i>Angewandte Chemie</i> , 2008 , 120, 1682-1685	3.6	12
55	Arylic versus Alkylic-Hydrophobic Linkers Determine the Supramolecular Structure and Optoelectronic Properties of Tripodal Amphiphilic Push-Pull Thiazoles. <i>Langmuir</i> , 2019 , 35, 2561-2570	4	11
54	Chemical and structural changes of quartz surfaces due to structuring by laser-induced backside wet etching. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 3195-202	3.6	11
53	Raman spectroscopic approach to monitor the in vitro cyclization of creatine-preatinine. <i>Chemical Physics Letters</i> , 2015 , 618, 225-230	2.5	9
52	In vitro monitoring of ring opening of leflunomide: A surface enhanced Raman scattering and DFT based approach. <i>Chemical Physics Letters</i> , 2014 , 613, 127-132	2.5	9
51	Ultrasensitive and towards single molecule SERS: general discussion. <i>Faraday Discussions</i> , 2017 , 205, 291-330	3.6	9
50	Analytical SERS: general discussion. <i>Faraday Discussions</i> , 2017 , 205, 561-600	3.6	9
49	Synergy of Photoinduced Force Microscopy and Tip-Enhanced Raman Spectroscopy Correlative Study on MoS2. <i>ACS Photonics</i> , 2019 , 6, 1191-1198	6.3	8
48	Near- and far-field Raman spectroscopic studies of nanodiamond composite films deposited by coaxial arc plasma. <i>Applied Physics Letters</i> , 2020 , 116, 041601	3.4	8
47	Surface enhanced Raman scattering based reaction monitoring of in vitro decyclization of creatinine -preatine. <i>RSC Advances</i> , 2016 , 6, 58943-58949	3.7	8
46	Dynamics of chemical bond: general discussion. <i>Faraday Discussions</i> , 2015 , 177, 121-54	3.6	8
45	Surface characterization of nanoscale co-crystals enabled through tip enhanced Raman spectroscopy. <i>Nanoscale</i> , 2020 , 12, 10306-10319	7.7	7
44	Surface enhanced Raman scattering investigation of two novel piperazine carbodithioic acids adsorbed on Ag and ZnO nanoparticles. <i>RSC Advances</i> , 2015 , 5, 5571-5579	3.7	7

(2021-2009)

43	Surface-enhanced Raman scattering as a tool to probe cytochrome P450-catalysed substrate oxidation. <i>Analytical and Bioanalytical Chemistry</i> , 2009 , 394, 1797-801	4.4	7	
42	Raman spectroscopy at the beginning of the twenty-first century II. <i>Journal of Raman Spectroscopy</i> , 2008 , 39, 1508-1511	2.3	7	
41	Raman spectra of ditertiary phosphines Ph2P-(CH2)n-PPh2 (n = 14) and coordination shifts in (CO)4Mo[Ph2P-(CH2)n-PPh2] (n = 1, 2). <i>Vibrational Spectroscopy</i> , 1994 , 7, 49-60	2.1	7	
40	Chemo-spectroscopic sensor for carboxyl terminus overexpressed in carcinoma cell membrane. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2015 , 11, 1831-9	6	6	
39	Structural Characterization of Insulin Fibril Surfaces using Tip Enhanced Raman Spectroscopy (TERS). <i>Biophysical Journal</i> , 2013 , 104, 49a	2.9	6	
38	High-resolution Raman Spectroscopy for the Nanostructural Characterization of Explosive Nanodiamond Precursors. <i>ChemPhysChem</i> , 2017 , 18, 175-178	3.2	6	
37	Label-free in vitro visualization and characterization of caveolar bulbs during stimulated re-epithelialization. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 6993-7002	4.4	6	
36	Continuum resonance Raman scattering in isotopically pure 127I79Br. <i>Journal of Raman Spectroscopy</i> , 1992 , 23, 365-372	2.3	6	
35	A fiber optic an ophotonic approach to the detection of antibodies and viral particles of COVID-19. <i>Nanophotonics</i> , 2020 , 10, 235-246	6.3	6	
34	Multimodal Characterization of Resin Embedded and Sliced Polymer Nanoparticles by Means of Tip-Enhanced Raman Spectroscopy and Force-Distance Curve Based Atomic Force Microscopy. <i>Small</i> , 2020 , 16, e1907418	11	5	
33	Plasmon induced deprotonation of 2-mercaptopyridine. <i>Analyst, The</i> , 2020 , 145, 2106-2110	5	5	
32	Optische Nahfeldmikroskopie und -spektroskopie als Werkzeug in der chemischen Analytik. <i>Angewandte Chemie</i> , 2000 , 112, 1814-1825	3.6	5	
31	Unveiling the interaction of protein fibrils with gold nanoparticles by plasmon enhanced nano-spectroscopy. <i>Nanoscale</i> , 2021 , 13, 14469-14479	7.7	5	
30	Raman Spectroscopy and Imaging in Bioanalytics Analytical Chemistry, 2021,	7.8	4	
29	Single particle analysis of herpes simplex virus: comparing the dimensions of one and the same virions via atomic force and scanning electron microscopy. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 4035-41	4.4	4	
28	Future challenges: general discussion. <i>Faraday Discussions</i> , 2015 , 177, 517-45	3.6	3	
27	Electronic Raman scattering from halogen atoms in the gaseous phase. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1994 , 187, 317-321	2.3	3	
26	Characterization of a library of vitamin A-functionalized polymethacrylate-based nanoparticles for siRNA delivery. <i>Polymer Chemistry</i> , 2021 , 12, 911-925	4.9	3	

25	Supramolecular Reorientation During Deposition Onto Metal Surfaces of Quasi-Two-Dimensional Langmuir Monolayers Composed of Bifunctional Amphiphilic, Twisted Perylenes. <i>Langmuir</i> , 2021 , 37, 11018-11026	4	3
24	Scanning Near-Field Optical Microscopy (SNOM) 2011 , 481-497		2
23	Polymorphism of Amyloid Fibrils Formed by a Short Peptide from Yeast Prion Protein Sup35: AFM and Tip Enhanced Raman Scattering Study. <i>Biophysical Journal</i> , 2011 , 100, 539a	2.9	2
22	Covalent binding of biorecognition groups to solids using poly(hydromethylsiloxane) as linkage. <i>Talanta</i> , 2004 , 63, 159-65	6.2	2
21	Molecular Relaxation Processes in Nucleic Acids Components as Probed with Raman Spectroscopy. <i>Revista De Chimie (discontinued)</i> , 2017 , 68,	1.8	2
20	Effects of substrate temperature and intermediate layer on adhesion, structural and mechanical properties of coaxial arc plasma deposition grown nanodiamond composite films on Si substrates. <i>Surface and Coatings Technology</i> , 2021 , 417, 127185	4.4	2
19	(Sub)picosecond processes in DNA and RNA constituents: a Raman spectroscopic assessment. <i>Polymer Bulletin</i> , 2017 , 74, 4087-4100	2.4	1
18	Spectroscopic Imaging of Biological Samples Using Near-Field Methods 2014 , 477-512		1
17	Multivariate Analysis of TERS Maps On A Single Human Colon Cancer Cell 2010 ,		1
16	Biomedical imaging by means of linear and non-linear Raman microspectroscopy 2010 ,		1
15	Label free investigation of biomolecules on the nanometer scale using tip-enhanced Raman spectroscopy 2010 ,		1
14	Raman Spectroscopy: Principles, Bene.ts, and Applications 2012 , 419-444		1
13	Force microscopy analysis using chemometric tools. <i>Analytical and Bioanalytical Chemistry</i> , 2008 , 390, 1253-60	4.4	1
12	Cover Picture: Tip-Enhanced Raman Spectroscopy of Single RNA Strands: Towards a Novel Direct-Sequencing Method (Angew. Chem. Int. Ed. 9/2008). <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 1525-1525	16.4	1
11	Tip-enhanced Raman scattering of a DNA binding compound 2006 , 6093, 242		1
10	pH-dependent disintegration of insulin amyloid fibrils monitored with atomic force microscopy and surface-enhanced Raman spectroscopy. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2021 , 256, 119672	4.4	1
9	The impact of episporic modification of on virulence and interaction with phagocytes. <i>Computational and Structural Biotechnology Journal</i> , 2021 , 19, 880-896	6.8	1
8	Aqueous black colloids of reticular nanostructured gold. <i>Scientific Reports</i> , 2015 , 5, 7899	4.9	

LIST OF PUBLICATIONS

7	Amyloid Fibrils: Nanoscale Heterogeneity of the Molecular Structure of Individual hIAPP Amyloid Fibrils Revealed with Tip-Enhanced Raman Spectroscopy (Small 33/2015). <i>Small</i> , 2015 , 11, 4130-4130	11
6	Magnetic apatite for structural insights on the plasma membrane. <i>Nanotechnology</i> , 2015 , 26, 035601	3.4
5	Untersuchung von Fl\(\text{B}\)sig-fl\(\text{S}\)sig-Phasengrenzen mit ortsaufl\(\text{S}\)ender NMR-Spektroskopie. Angewandte Chemie, 2009 , 121, 6461-6463	3.6
4	Molekl&pektroskopie auf der Nanometerskala. <i>Nachrichten Aus Der Chemie</i> , 2006 , 54, 999-1002	0.1
3	Konzentrationsmessung von Feststoffkomponenten in Rauchgasen auf Basis der Raman-Spektroskopie. <i>Chemie-Ingenieur-Technik</i> , 2005 , 77, 1937-1941	0.8
2	Reactivity and Bio Samples Probed by Tip-Enhanced Raman Spectroscopy 2019 , 71-108	
1	Synthesis and Nanoscale Characterization of Hierarchically Assembled Molecular Nanosheets. Advanced Materials Interfaces, 2102389	4.6