Pello Uranga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2477919/publications.pdf

Version: 2024-02-01

567281 434195 1,058 46 15 citations h-index papers

g-index 46 46 46 595 all docs docs citations times ranked citing authors

31

#	Article	IF	CITATIONS
1	Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 361, 367-376.	5.6	198
2	Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb–V microalloyed steel. Materials Science & Depth (Science & Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2559-2569.	5.6	136
3	Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 345, 319-327.	5.6	95
4	Static Recrystallization Behaviour of a Wide Range of Austenite Grain Sizes in Microalloyed Steels ISIJ International, 2000, 40, 893-901.	1.4	90
5	Modeling of Austenite Grain Size Distribution in Nb Microalloyed Steels Processed by Thin Slab Casting and Direct Rolling (TSDR) Route. ISIJ International, 2004, 44, 1416-1425.	1.4	52
6	Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3552-3563.	2.2	49
7	Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part II: Impact Toughness. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4972-4982.	2.2	46
8	Effect of Composition and Deformation on Coarse-Grained Austenite Transformation in Nb-Mo Microalloyed Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3729-3742.	2.2	44
9	Microstructural and precipitation characterization in Nb-Mo microalloyed steels: Estimation of the contributions to the strength. Metals and Materials International, 2014, 20, 807-817.	3.4	42
10	Microstructural Features Controlling Mechanical Properties in Nb-Mo Microalloyed Steels. Part I: Yield Strength. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4960-4971.	2.2	38
11	Evaluating Strengthening and Impact Toughness Mechanisms for Ferritic and Bainitic Microstructures in Nb, Nb-Mo and Ti-Mo Microalloyed Steels. Metals, 2017, 7, 65.	2.3	27
12	An EBSD-based methodology for the characterization of intercritically deformed low carbon steel. Materials Characterization, 2019, 147, 31-42.	4.4	17
13	Toughness Property Control by Nb and Mo Additions in High-Strength Quenched and Tempered Boron Steels. Metals, 2021, 11, 95.	2.3	17
14	Optimization of Rolling Conditions in Nb Microalloyed Steel Processed by Thin Slab Casting and Direct Rolling Route: Processing Maps. Materials Science Forum, 2005, 500-501, 245-252.	0.3	16
15	Determination of recrystallization kinetics from plane strain compression tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 174-180.	5 . 6	16
16	Controlled undercooling of liquid iron in contact with Al2O3 substrates under varying oxygen partial pressures. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2006, 37, 811-821.	2.1	15
17	Molybdenum alloying in high-performance flat-rolled steel grades. Advances in Manufacturing, 2020, 8, 15-34.	6.1	15
18	Role of carbon and nitrogen content on microstructural homogeneity in thin slab direct rolled microalloyed steels. Ironmaking and Steelmaking, 2009, 36, 162-169.	2.1	13

#	Article	IF	CITATIONS
19	Microstructural Modelling of Nb Microalloyed Steels during Thin Slab Direct Rolling Processing. Steel Research International, 2007, 78, 199-209.	1.8	11
20	Analysis of Complex Steel Microstructures by High-Resolution EBSD. Jom, 2016, 68, 215-223.	1.9	10
21	Precipitation Strengthening by Induction Treatment in High Strength Low Carbon Microalloyed Hot-Rolled Plates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 946-961.	2.2	10
22	Microalloying and austenite evolution during hot working in near net shape processed steels. Materials Science and Technology, 2009, 25, 1147-1153.	1.6	9
23	Effect of Microstructure on Post-Rolling Induction Treatment in a Low C Ti-Mo Microalloyed Steel. Metals, 2018, 8, 694.	2.3	9
24	Computer-Integrated Platform for Automatic, Flexible, and Optimal Multivariable Design of a Hot Strip Rolling Technology Using Advanced Multiphase Steels. Metals, 2019, 9, 737.	2.3	8
25	Thermomechanical Processing of Steels. Metals, 2020, 10, 641.	2.3	8
26	On the characterization procedure to quantify the contribution of microstructure on mechanical properties in intercritically deformed low carbon HSLA steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139800.	5.6	8
27	Effect of Nb and Mo Additions in the Microstructure/Tensile Property Relationship in High Strength Quenched and Quenched and Tempered Boron Steels. Metals, 2021, 11, 29.	2.3	7
28	Controlled Undercooling of Liquid Nickel in Contact with ZrO2 and Al2O3 Substrates under Varying Oxygen Partial Pressures. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2007, 38, 257-266.	2.1	6
29	Modeling of CCT Diagrams and Ferrite Grain Size Prediction in Low Carbon Nb–Mo Microalloyed Steels. ISIJ International, 2015, 55, 1963-1972.	1.4	6
30	Interaction between Microalloying Additions and Phase Transformation during Intercritical Deformation in Low Carbon Steels. Metals, 2019, 9, 1049.	2.3	6
31	New Trends and Technologies in Thin-Slab Direct Rolling: Improved Microstructure & Amp; Mechanical Behavior. Materials Science Forum, 0, 706-709, 2752-2757.	0.3	5
32	Effect of Quenching Strategy and Nb-Mo Additions on Phase Transformations and Quenchability of High-Strength Boron Steels. Jom, 2021, 73, 3158-3168.	1.9	5
33	Analysis of Strain Partitioning in Intercritically Deformed Microstructures via Interrupted Tensile Tests. Metals, 2021, 11, 112.	2.3	5
34	Effect of Dynamic Recrystallization on Microstructural Evolution in B Steels Microalloyed with Nb and/or Mo. Materials, 2022, 15, 1424.	2.9	4
35	Effect of Nb and Mo on Austenite Microstructural Evolution During Hot Deformation in Boron High Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 1529-1539.	2.2	4
36	Austenite Evolution Modeling in Nb Microalloyed Steels during Thin Slab Direct Rolling. Materials Science Forum, 2003, 426-432, 3915-3920.	0.3	3

#	Article	IF	CITATIONS
37	Effect of Coiling Temperature on Microstructure and Mechanical Properties of a Nb-V Microalloyed Steel. Materials Science Forum, 0, 638-642, 3350-3355.	0.3	3
38	Through-Thickness Homogenization in Thin Slab Direct Rolling of Nb Microalloyed Steels. , 2016, , 309-315.		2
39	Through-Thickness Homogenization in Thin Slab Direct Rolling of NB Microalloyed Steels. , 2015, , 307-315.		1
40	Relation between microstructure and mechanical properties on intercritically deformed low carbon steels. Procedia Manufacturing, 2020, 50, 291-297.	1.9	1
41	Effect of Thermomechanical Strategy and Mo-Nb-B Alloying Additions on High Strength Medium Carbon Q/Q& T Steels. , 2019, , .		1
42	Direct Observation of the Effects of Alloying Additions on Transformation Mechanisms in Emerging Steel Alloys with In-Situ TEM. Microscopy and Microanalysis, 2009, 15, 704-705.	0.4	0
43	Some Aspects Regarding Microstructural Heterogeneities during Steel Processing. Materials Science Forum, 0, 706-709, 157-164.	0.3	0
44	Effect of the Time between Last Deformation Pass and Accelerated Cooling on the Mechanical Properties in Nb and Nb-Mo Microalloyed Steels. Key Engineering Materials, 2016, 716, 281-290.	0.4	0
45	Microalloying Additions to Commodity C-Mn Structural Steels: Fundamental Strengthening Mechanisms Leading to Improvements in Mechanical Properties, Alloy Optimization, Reduced Alloy Costs and Robustness of Hot Rolling Processing. Materials Science Forum, 2018, 941, 71-76.	0.3	0
46	Advances in Microalloyed Steels. Metals, 2019, 9, 279.	2.3	0