
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2477825/publications.pdf Version: 2024-02-01

KIINIAN R DAVE

#	Article	IF	CITATIONS
1	Ischemic brain injury in diabetes and endoplasmic reticulum stress. Neurochemistry International, 2022, 152, 105219.	3.8	5
2	Comparing Protection of Remote Limb with Resveratrol Preconditioning following Rodent Subarachnoid Hemorrhage. Biomolecules, 2022, 12, 568.	4.0	1
3	Chronic Nicotine Exposure Increases Hematoma Expansion following Collagenase-Induced Intracerebral Hemorrhage in Rats. Biomolecules, 2022, 12, 621.	4.0	2
4	Nicotine Exposure Along with Oral Contraceptive Treatment in Female Rats Exacerbates Post-cerebral Ischemic Hypoperfusion Potentially via Altered Histamine Metabolism. Translational Stroke Research, 2021, 12, 817-828.	4.2	8
5	Cerebroâ€renal interaction and stroke. European Journal of Neuroscience, 2021, 53, 1279-1299.	2.6	15
6	Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology, 2021, 162, 160-178.	4.4	12
7	Intra-arterial Stem Cell Therapy Diminishes Inflammasome Activation After Ischemic Stroke: a Possible Role of Acid Sensing Ion Channel 1a. Journal of Molecular Neuroscience, 2021, 71, 419-426.	2.3	13
8	Tobacco Use: A Major Risk Factor of Intracerebral Hemorrhage. Journal of Stroke, 2021, 23, 37-50.	3.2	14
9	Post-stroke depression: Chaos to exposition. Brain Research Bulletin, 2021, 168, 74-88.	3.0	22
10	Stroke and stroke prevention in sickle cell anemia in developed and selected developing countries. Journal of the Neurological Sciences, 2021, 427, 117510.	0.6	10
11	New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience, 2021, 13, 623751.	3.4	17
12	Potential link between post-acute ischemic stroke exposure to hypoglycemia and hemorrhagic transformation. International Journal of Stroke, 2020, 15, 477-483.	5.9	21
13	Exposure to recurrent hypoglycemia alters hippocampal metabolism in treated streptozotocinâ€induced diabetic rats. CNS Neuroscience and Therapeutics, 2020, 26, 126-135.	3.9	8
14	Automated Assessment of Hematoma Volume of Rodents Subjected to Experimental Intracerebral Hemorrhagic Stroke by Bayes Segmentation Approach. Translational Stroke Research, 2020, 11, 789-798.	4.2	16
15	Molecular Pathogenesis and Interventional Strategies for Alzheimer's Disease: Promises and Pitfalls. ACS Pharmacology and Translational Science, 2020, 3, 472-488.	4.9	21
16	Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Translational Stroke Research, 2020, 11, 1185-1202.	4.2	190
17	Role of Region-Specific Brain Decellularized Extracellular Matrix on <i>In Vitro</i> Neuronal Maturation. Tissue Engineering - Part A, 2020, 26, 964-978.	3.1	16
18	Migraine and Ischemic Stroke: Deciphering the Bidirectional Pathway. ACS Chemical Neuroscience, 2020, 11, 1525-1538.	3.5	10

#	Article	IF	CITATIONS
19	The Role of Inflammasomes in Atherosclerosis and Stroke Pathogenesis. Current Pharmaceutical Design, 2020, 26, 4234-4245.	1.9	7
20	Advances in Studies on Stroke-Induced Secondary Neurodegeneration (SND) and Its Treatment. Current Topics in Medicinal Chemistry, 2020, 20, 1154-1168.	2.1	10
21	Novel Targets for Parkinson's Disease: Addressing Different Therapeutic Paradigms and Conundrums. ACS Chemical Neuroscience, 2019, 10, 44-57.	3.5	22
22	Age-Dependent Levels of Protein Kinase Cs in Brain: Reduction of Endogenous Mechanisms of Neuroprotection. International Journal of Molecular Sciences, 2019, 20, 3544.	4.1	8
23	Sex-Dependent Differences in Physical Exercise-Mediated Cognitive Recovery Following Middle Cerebral Artery Occlusion in Aged Rats. Frontiers in Aging Neuroscience, 2019, 11, 261.	3.4	6
24	Endoplasmic reticulum–mitochondria crosstalk: from junction to function across neurological disorders. Annals of the New York Academy of Sciences, 2019, 1457, 41-60.	3.8	64
25	Intra-arterial stem cell therapy modulates neuronal calcineurin and confers neuroprotection after ischemic stroke. International Journal of Neuroscience, 2019, 129, 1039-1044.	1.6	24
26	Blockade of Acid-Sensing Ion Channels Attenuates Recurrent Hypoglycemia-Induced Potentiation of Ischemic Brain Damage in Treated Diabetic Rats. NeuroMolecular Medicine, 2019, 21, 454-466.	3.4	4
27	Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chemical Neuroscience, 2019, 10, 2629-2646.	3.5	8
28	Preclinical Evaluation of Safety and Biodistribution of Red Cell Microparticles: A Novel Hemostatic Agent. Journal of Cardiovascular Pharmacology and Therapeutics, 2019, 24, 474-483.	2.0	5
29	Interplay between Mitophagy and Inflammasomes in Neurological Disorders. ACS Chemical Neuroscience, 2019, 10, 2195-2208.	3.5	19
30	Trigonelline therapy confers neuroprotection by reduced glutathione mediated myeloperoxidase expression in animal model of ischemic stroke. Life Sciences, 2019, 216, 49-58.	4.3	37
31	Mitochondrial Dysfunction in Stroke: Implications of Stem Cell Therapy. Translational Stroke Research, 2019, 10, 121-136.	4.2	37
32	Therapeutic spectrum of interferonâ€Î² in ischemic stroke. Journal of Neuroscience Research, 2019, 97, 116-127.	2.9	18
33	Recurrent Hypoglycemia Exacerbates Cerebral Ischemic Damage in Diabetic Rats via Enhanced Post-Ischemic Mitochondrial Dysfunction. Translational Stroke Research, 2019, 10, 78-90.	4.2	21
34	Preconditioning with CpG-ODN1826 reduces ischemic brain injury in young male mice: a replication study. Conditioning Medicine, 2019, 2, 178-184.	1.3	0
35	Noncoding RNAs in ischemic stroke: time to translate. Annals of the New York Academy of Sciences, 2018, 1421, 19-36.	3.8	41
36	Impact of Hypoglycemia on Brain Metabolism During Diabetes. Molecular Neurobiology, 2018, 55, 9075-9088.	4.0	47

#	Article	IF	CITATIONS
37	Myeloperoxidase and Neurological Disorder: A Crosstalk. ACS Chemical Neuroscience, 2018, 9, 421-430.	3.5	50
38	Acidosis mediates recurrent hypoglycemia-induced increase in ischemic brain injury in treated diabetic rats. Neuropharmacology, 2018, 135, 192-201.	4.1	4
39	Mesenchymal Stem Cell Therapy in Ischemic Stroke: A Metaâ€∎nalysis of Preclinical Studies. Clinical Pharmacology and Therapeutics, 2018, 103, 990-998.	4.7	45
40	Getting Closer to an Effective Intervention of Ischemic Stroke: The Big Promise of Stem Cell. Translational Stroke Research, 2018, 9, 356-374.	4.2	49
41	Ischemic Preconditioning Protects Astrocytes against Oxygen Glucose Deprivation Via the Nuclear Erythroid 2-Related Factor 2 Pathway. Translational Stroke Research, 2018, 9, 99-109.	4.2	29
42	A Friend or Foe: Calcineurin across the Gamut of Neurological Disorders. ACS Central Science, 2018, 4, 805-819.	11.3	35
43	Pharmacokinetics of Human Red Blood Cell Microparticles Prepared Using High-Pressure Extrusion Method. Frontiers in Pharmacology, 2018, 9, 599.	3.5	5
44	Inflammasomes in stroke: a triggering role for acidâ€sensing ion channels. Annals of the New York Academy of Sciences, 2018, 1431, 14-24.	3.8	13
45	Exposure to hypoglycemia and risk of stroke. Annals of the New York Academy of Sciences, 2018, 1431, 25-34.	3.8	34
46	Cerebral ischemic damage in diabetes: an inflammatory perspective. Journal of Neuroinflammation, 2017, 14, 21.	7.2	135
47	Diabetic aggravation of stroke and animal models. Experimental Neurology, 2017, 292, 63-79.	4.1	21
48	Physical Exercise Improves Cognitive Outcomes in 2 Models of Transient Cerebral Ischemia. Stroke, 2017, 48, 2306-2309.	2.0	16
49	Stroke Management: An Emerging Role of Nanotechnology. Micromachines, 2017, 8, 262.	2.9	38
50	Protein Kinase C Epsilon Promotes Cerebral Ischemic Tolerance Via Modulation of Mitochondrial Sirt5. Scientific Reports, 2016, 6, 29790.	3.3	50
51	Aerobic, Resistance, and Cognitive Exercise Training Poststroke. Stroke, 2015, 46, 2012-2016.	2.0	42
52	Resveratrol Preconditioning Induces a Novel Extended Window of Ischemic Tolerance in the Mouse Brain. Stroke, 2015, 46, 2293-2298.	2.0	63
53	Resveratrol Preconditioning Protects Against Cerebral Ischemic Injury via Nuclear Erythroid 2–Related Factor 2. Stroke, 2015, 46, 1626-1632.	2.0	114
54	Hyperglycemia / hypoglycemia-induced mitochondrial dysfunction and cerebral ischemic damage in diabetics. Metabolic Brain Disease, 2015, 30, 437-447.	2.9	30

#	Article	IF	CITATIONS
55	Protein Kinase C Delta Modulates Endothelial Nitric Oxide Synthase after Cardiac Arrest. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 613-620.	4.3	11
56	Biomarkers for Ischemic Preconditioning: Finding the Responders. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 933-941.	4.3	64
57	Ventricular Fibrillation-Induced Cardiac Arrest in the Rat as a Model of Global Cerebral Ischemia. Translational Stroke Research, 2013, 4, 571-578.	4.2	13
58	Neuroprotection: Lessons from hibernators. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2012, 162, 1-9.	1.6	94
59	Recurrent hypoglycemia increases oxygen glucose deprivation-induced damage in hippocampal organotypic slices. Neuroscience Letters, 2011, 496, 25-29.	2.1	11
60	Activation of Protein Kinase C Delta following Cerebral Ischemia Leads to Release of Cytochrome C from the Mitochondria via Bad Pathway. PLoS ONE, 2011, 6, e22057.	2.5	33
61	Recurrent Hypoglycemia Exacerbates Cerebral Ischemic Damage in Streptozotocin-Induced Diabetic Rats. Stroke, 2011, 42, 1404-1411.	2.0	61
62	Protein kinase C epsilon activation delays neuronal depolarization during cardiac arrest in the euthermic arctic ground squirrel. Journal of Neurochemistry, 2009, 110, 1170-1179.	3.9	51
63	On Message Ribonucleic Acids Targeting to Mitochondria. Biochemistry Insights, 2009, 2, BCI.S3745.	3.3	1
64	lschemic Preconditioning Targets the Respiration of Synaptic Mitochondria via Protein Kinase Cε. Journal of Neuroscience, 2008, 28, 4172-4182.	3.6	104
65	The Arctic Ground Squirrel Brain Is Resistant to Injury From Cardiac Arrest During Euthermia. Stroke, 2006, 37, 1261-1265.	2.0	84
66	Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neuroscience Letters, 2006, 404, 170-175.	2.1	93
67	Ischemic preconditioning ameliorates excitotoxicity by shifting glutamate/γ-aminobutyric acid release and biosynthesis. Journal of Neuroscience Research, 2005, 82, 665-673.	2.9	93
68	Aberrant Î'PKC activation in the spinal cord of Wobbler mouse: a model of motor neuron disease. Neurobiology of Disease, 2005, 18, 126-133.	4.4	14
69	Analogous neuroprotection induced by resveratrol and ischemic preconditioning in CA1 region of hippocampus after ischemia. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S301-S301.	4.3	0
70	Effect of ɛPKC translocation on respiration in synaptosomal mitochondria after ischemic preconditioning. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S302-S302.	4.3	0
71	Mild cardiopulmonary arrest promotes synaptic dysfunction in rat hippocampus. Brain Research, 2004, 1024, 89-96.	2.2	29
72	Early mitochondrial dysfunction occurs in motor cortex and spinal cord at the onset of disease in the Wobbler mouse. Experimental Neurology, 2003, 182, 412-420.	4.1	29