Teresa Pellegrino

List of Publications by Citations

Source: https://exaly.com/author-pdf/247766/teresa-pellegrino-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

126 13,710 117 55 h-index g-index citations papers 6.18 15,020 10.4 129 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
126	Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. <i>Nano Letters</i> , 2005 , 5, 331-8	11.5	1419
125	Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: ☐A General Route to Water Soluble Nanocrystals. <i>Nano Letters</i> , 2004 , 4, 703-707	11.5	930
124	Synthesis, properties and perspectives of hybrid nanocrystal structures. <i>Chemical Society Reviews</i> , 2006 , 35, 1195-208	58.5	796
123	Biological applications of colloidal nanocrystals. <i>Nanotechnology</i> , 2003 , 14, R15-R27	3.4	626
122	Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. <i>ACS Nano</i> , 2012 , 6, 3080-91	16.7	545
121	Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. <i>ACS Nano</i> , 2016 , 10, 2436-46	16.7	526
120	Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. <i>ACS Nano</i> , 2015 , 9, 1788-800	16.7	442
119	Labelling of cells with quantum dots. <i>Nanotechnology</i> , 2005 , 16, R9-R25	3.4	389
118	From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. <i>Pharmacological Research</i> , 2010 , 62, 126-43	10.2	365
117	On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. <i>Small</i> , 2005 , 1, 48-63	11	322
116	Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions. <i>Journal of the American Chemical Society</i> , 2013 , 135, 17630-7	16.4	314
115	Subnanometer local temperature probing and remotely controlled drug release based on azo-functionalized iron oxide nanoparticles. <i>Nano Letters</i> , 2013 , 13, 2399-406	11.5	301
114	Conformation of Oligonucleotides Attached to Gold Nanocrystals Probed by Gel Electrophoresis. <i>Nano Letters</i> , 2003 , 3, 33-36	11.5	292
113	Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. <i>Biomaterials</i> , 2014 , 35, 6400-11	15.6	290
112	Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots. <i>Chemistry of Materials</i> , 2002 , 14, 2113-2119	9.6	274
111	CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes. <i>Journal of the American Chemical Society</i> , 2009 , 131, 2948-58	16.4	220
110	Nanoparticles for imaging, sensing, and therapeutic intervention. <i>ACS Nano</i> , 2014 , 8, 3107-22	16.7	211

(2016-2006)

109	Heterodimers based on CoPt3-Au nanocrystals with tunable domain size. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6690-8	16.4	194
108	Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. ACS Nano, 2013 , 7, 3939-52	16.7	192
107	Electrophoretic Separation of Nanoparticles with a Discrete Number of Functional Groups. <i>Advanced Functional Materials</i> , 2006 , 16, 943-948	15.6	188
106	Heat-generating iron oxide nanocubes: subtle "destructurators" of the tumoral microenvironment. <i>ACS Nano</i> , 2014 , 8, 4268-83	16.7	166
105	One-pot synthesis and characterization of size-controlled bimagnetic FePt-iron oxide heterodimer nanocrystals. <i>Journal of the American Chemical Society</i> , 2008 , 130, 1477-87	16.4	165
104	Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting. <i>ACS Nano</i> , 2011 , 5, 1109-21	16.7	157
103	From Binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange. <i>ACS Nano</i> , 2015 , 9, 521-31	16.7	155
102	The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice. ACS Nano, 2015, 9, 7925-39	16.7	140
101	Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels. <i>ACS Nano</i> , 2016 , 10, 7627-38	16.7	134
100	Water solubilization of hydrophobic nanocrystals by means of poly(maleic anhydride-alt-1-octadecene). <i>Journal of Materials Chemistry</i> , 2008 , 18, 1991		123
99	CoxFe3NO4 Nanocubes for Theranostic Applications: Effect of Cobalt Content and Particle Size. <i>Chemistry of Materials</i> , 2016 , 28, 1769-1780	9.6	120
98	Correlating Magneto-Structural Properties to Hyperthermia Performance of Highly Monodisperse Iron Oxide Nanoparticles Prepared by a Seeded-Growth Route. <i>Chemistry of Materials</i> , 2011 , 23, 4170-4	186	116
97	Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo. <i>Advanced Functional Materials</i> , 2018 , 28, 1803660	15.6	114
96	One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 4426-4434	7-3	107
95	Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules. <i>Nanoscale</i> , 2015 , 7, 570-6	7.7	100
94	Water-repellent cellulose fiber networks with multifunctional properties. <i>ACS Applied Materials</i> & amp; Interfaces, 2011 , 3, 4024-31	9.5	95
93	Colloidal CuFeS Nanocrystals: Intermediate Fe d-Band Leads to High Photothermal Conversion Efficiency. <i>Chemistry of Materials</i> , 2016 , 28, 4848-4858	9.6	93
92	Biotransformations of magnetic nanoparticles in the body. <i>Nano Today</i> , 2016 , 11, 280-284	17.9	92

91	"Nanohybrids" based on pH-responsive hydrogels and inorganic nanoparticles for drug delivery and sensor applications. <i>Nano Letters</i> , 2011 , 11, 3136-41	11.5	92
90	Fluorescent-magnetic hybrid nanostructures: preparation, properties, and applications in biology. <i>IEEE Transactions on Nanobioscience</i> , 2007 , 6, 298-308	3.4	89
89	Multifunctional nanostructures based on inorganic nanoparticles and oligothiophenes and their exploitation for cellular studies. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10545-55	16.4	84
88	Nanosystems Based on Magnetic Nanoparticles and Thermo- or pH-Responsive Polymers: An Update and Future Perspectives. <i>Accounts of Chemical Research</i> , 2018 , 51, 999-1013	24.3	81
87	Controlled release of doxorubicin loaded within magnetic thermo-responsive nanocarriers under magnetic and thermal actuation in a microfluidic channel. <i>ACS Nano</i> , 2012 , 6, 10535-45	16.7	79
86	Magnetic nanobeads decorated by thermo-responsive PNIPAM shell as medical platforms for the efficient delivery of doxorubicin to tumour cells. <i>Nanoscale</i> , 2011 , 3, 619-29	7.7	79
85	Functionalization of strongly interacting magnetic nanocubes with (thermo)responsive coating and their application in hyperthermia and heat-triggered drug delivery. <i>ACS Applied Materials & Materials & Interfaces</i> , 2015 , 7, 10132-45	9.5	78
84	Asymmetric Assembling of Iron Oxide Nanocubes for Improving Magnetic Hyperthermia Performance. <i>ACS Nano</i> , 2017 , 11, 12121-12133	16.7	76
83	Polymer coated inorganic nanoparticles: tailoring the nanocrystal surface for designing nanoprobes with biological implications. <i>Nanoscale</i> , 2012 , 4, 3319-34	7.7	76
82	Nanoscale Transformations in Covellite (CuS) Nanocrystals in the Presence of Divalent Metal Cations in a Mild Reducing Environment. <i>Chemistry of Materials</i> , 2015 , 27, 7531-7537	9.6	75
81	Magnetic/Silica Nanocomposites as Dual-Mode Contrast Agents for Combined Magnetic Resonance Imaging and Ultrasonography. <i>Advanced Functional Materials</i> , 2011 , 21, 2548-2555	15.6	70
80	Optimal enhancement configuration of silica nanoparticles for ultrasound imaging and automatic detection at conventional diagnostic frequencies. <i>Investigative Radiology</i> , 2010 , 45, 715-24	10.1	69
79	Quantum dot-based cell motility assay. <i>Differentiation</i> , 2003 , 71, 542-8	3.5	68
78	In vivo biocompatibility of boron nitride nanotubes: effects on stem cell biology and tissue regeneration in planarians. <i>Nanomedicine</i> , 2015 , 10, 1911-22	5.6	67
77	A cast-mold approach to iron oxide and Pt/iron oxide nanocontainers and nanoparticles with a reactive concave surface. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2205-17	16.4	67
76	Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 57.	2 <i>7²5</i> 739	9 ⁶⁷
75	Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. <i>Nanoscale</i> , 2013 , 5, 11374-84	7.7	66
74	Magnetic-fluorescent colloidal nanobeads: preparation and exploitation in cell separation experiments. <i>Macromolecular Bioscience</i> , 2009 , 9, 952-8	5.5	63

(2018-2017)

Selective Targeting of Neurons with Inorganic Nanoparticles: Revealing the Crucial Role of Nanoparticle Surface Charge. <i>ACS Nano</i> , 2017 , 11, 6630-6640	16.7	57
Charge Transport and Electrochemical Properties of Colloidal Greigite (Fe3S4) Nanoplatelets. <i>Chemistry of Materials</i> , 2011 , 23, 3762-3768	9.6	57
Impact of diabetes on cardiac sympathetic innervation in patients with heart failure: a 123I meta-iodobenzylguanidine (123I MIBG) scintigraphic study. <i>Diabetes Care</i> , 2013 , 36, 2395-401	14.6	54
Post-Synthesis Incorporation of L u in CuS Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15145-51	16.4	51
Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 16848-55	3.6	49
Magnetic pH-responsive nanogels as multifunctional delivery tools for small interfering RNA (siRNA) molecules and iron oxide nanoparticles (IONPs). <i>Chemical Communications</i> , 2012 , 48, 2400-2	5.8	49
Acidic pH-responsive nanogels as smart cargo systems for the simultaneous loading and release of short oligonucleotides and magnetic nanoparticles. <i>Langmuir</i> , 2010 , 26, 10315-24	4	49
Synthesis of Highly Fluorescent Copper Clusters Using Living Polymer Chains as Combined Reducing Agents and Ligands. <i>ACS Nano</i> , 2015 , 9, 11886-97	16.7	48
Mesoscale assemblies of iron oxide nanocubes as heat mediators and image contrast agents. <i>Langmuir</i> , 2015 , 31, 808-16	4	48
Magnetic nanobeads decorated with silver nanoparticles as cytotoxic agents and photothermal probes. <i>Small</i> , 2012 , 8, 2731-42	11	48
Colloidal Ordered Assemblies in a Polymer Shell Novel Type of Magnetic Nanobeads for Theranostic Applications. <i>Chemistry of Materials</i> , 2013 , 25, 1055-1062	9.6	47
Synthesis and biological assay of GSH functionalized fluorescent quantum dots for staining Hydra vulgaris. <i>Bioconjugate Chemistry</i> , 2007 , 18, 829-35	6.3	47
Magnetic properties of novel superparamagnetic MRI contrast agents based on colloidal nanocrystals. <i>Journal of Magnetism and Magnetic Materials</i> , 2008 , 320, e320-e323	2.8	42
Non-covalent functionalization of carbon nano-onions with pyrene B ODIPY dyads for biological imaging. <i>RSC Advances</i> , 2015 , 5, 50253-50258	3.7	41
Star poly(Etaprolactone)-based electrospun fibers as biocompatible scaffold for doxorubicin with prolonged drug release activity. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 161, 488-496	6	41
Three-dimensional cage-like microscaffolds for cell invasion studies. <i>Scientific Reports</i> , 2015 , 5, 10531	4.9	40
Magnetic nanocarriers with tunable pH dependence for controlled loading and release of cationic and anionic payloads. <i>Advanced Materials</i> , 2011 , 23, 5645-50	24	40
Fe Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment. <i>Nano Letters</i> , 2018 , 18, 6856-686	6 ^{11.5}	40
	Nanoparticle Surface Charge. ACS Nano, 2017, 11, 6630-6640 Charge Transport and Electrochemical Properties of Colloidal Greigite (Fe3S4) Nanoplatelets. Chemistry of Materials, 2011, 23, 3762-3768 Impact of diabetes on cardiac sympathetic innervation in patients with heart failure: a 1231 meta-iodobenzylguanidine (1231 MIBG) scintigraphic study. Diabetes Care, 2013, 36, 2395-401 Post-Synthesis Incorporation of Itu in Cus Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics. Journal of the American Chemical Society, 2015, 137, 15145-51 Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia. Physical Chemistry Chemical Physics, 2016, 18, 16848-55 Magnetic pH-responsive nanogels as multifunctional delivery tools for small interfering RNA (siRNA) molecules and iron oxide nanoparticles (IONPs). Chemical Communications, 2012, 48, 2400-2 Acidic pH-responsive nanogels as smart cargo systems for the simultaneous loading and release of short oligonucleotides and magnetic nanoparticles. Langmuir, 2010, 26, 10315-24 Synthesis of Highly Fluorescent Copper Clusters Using Living Polymer Chains as Combined Reducing Agents and Ligands. ACS Nano, 2015, 9, 11886-97 Mesoscale assemblies of iron oxide nanocubes as heat mediators and image contrast agents. Langmuir, 2015, 31, 808-16 Magnetic nanobeads decorated with silver nanoparticles as cytotoxic agents and photothermal probes. Small, 2012, 8, 2731-42 Colloidal Ordered Assemblies in a Polymer Shellia Novel Type of Magnetic Nanobeads for Theranostic Applications. Chemistry of Materials, 2013, 25, 1055-1062 Synthesis and biological assay of GSH functionalized fluorescent quantum dots for staining Hydra vulgaris. Bioconjugate Chemistry, 2007, 18, 829-35 Magnetic properties of novel superparamagnetic MRI contrast agents based on colloidal nanocrystals. Journal of Magnetism and Magnetic Materials, 2008, 320, e320-e323 Non-covalent functionalization of carbon nano-onions with	Charge Transport and Electrochemical Properties of Colloidal Greigite (Fe354) Nanoplatelets. Chemistry of Materials, 2011, 23, 3762-3768 Impact of diabetes on cardiac sympathetic innervation in patients with heart failure: a 1231 meta-iodobenzylguanidine (1231 MIBG) scintigraphic study. Diabetes Care, 2013, 36, 2395-401 14-6 Post-Synthesis Incorporation of Bu in CuS Nanocrystals to Radiolabel Photothermal Probes: A Feasible Approach for Clinics. Journal of the American Chemical Society, 2015, 137, 15145-51 Manganese doped-iron oxide nanoparticle clusters and their potential as agents for magnetic resonance imaging and hyperthermia. Physical Chemistry Chemical Physics, 2016, 18, 16848-55 Magnetic pH-responsive nanogels as multifunctional delivery tools for small interfering RNA (siRNA) molecules and iron oxide nanoparticles (IONPs). Chemical Communications, 2012, 48, 2400-2 Acidic pH-responsive nanogels as smart cargo systems for the simultaneous loading and release of short oligonucleotides and magnetic nanoparticles. Langmuir, 2010, 26, 10315-24 4. Synthesis of Highly Fluorescent Copper Clusters Using Living Polymer Chains as Combined Reducing Agents and Ligands. ACS Nano, 2015, 9, 11886-97 Mesoscale assemblies of iron oxide nanocubes as heat mediators and image contrast agents. Langmuir, 2015, 31, 808-16 Magnetic nanobeads decorated with silver nanoparticles as cytotoxic agents and photothermal probes. Small, 2012, 8, 2731-42 Colloidal Ordered Assemblies in a Polymer Shellia Novel Type of Magnetic Nanobeads for Theranostic Applications. Chemistry of Materials, 2013, 25, 1055-1062 Synthesis and biological assay of GSH functionalized fluorescent quantum dots for staining Hydra vulgaris. Bioconjugate Chemistry, 2007, 18, 829-35 Magnetic properties of novel superparamagnetic MRI contrast agents based on colloidal nanocrystals. Journal of Magnetism and Magnetic Materials, 2008, 320, e320-e323 Non-covalent functionalization of carbon nano-onions with pyreneBODIPY dyads for biological imaging. RSC Ad

55	Fluorescent nanocrystals reveal regulated portals of entry into and between the cells of Hydra. <i>PLoS ONE</i> , 2009 , 4, e7698	3.7	38
54	Copper-triggered aggregation of ubiquitin. <i>PLoS ONE</i> , 2009 , 4, e7052	3.7	37
53	Superparamagnetic cellulose fiber networks via nanocomposite functionalization. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1662-1666		36
52	Bioconjugation of rod-shaped fluorescent nanocrystals for efficient targeted cell labeling. <i>Langmuir</i> , 2009 , 25, 12614-22	4	36
51	Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine. <i>Nanoscale</i> , 2011 , 3, 5110-9	7.7	33
50	Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. <i>Chemical Society Reviews</i> , 2021 , 50, 11614-11	6 6 7 ^{8.5}	33
49	Rod-shaped nanocrystals elicit neuronal activity in vivo. <i>Small</i> , 2008 , 4, 1747-55	11	32
48	Exploiting Unique Alignment of Cobalt Ferrite Nanoparticles, Mild Hyperthermia, and Controlled Intrinsic Cobalt Toxicity for Cancer Therapy. <i>Advanced Materials</i> , 2020 , 32, e2003712	24	32
47	Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2019 , 11, 41957-41971	9.5	31
46	Magnetophoresis at the nanoscale: tracking the magnetic targeting efficiency of nanovectors. <i>Nanomedicine</i> , 2012 , 7, 1713-27	5.6	31
45	Observer reproducibility of results from a low-dose 123I-metaiodobenzylguanidine cardiac imaging protocol in patients with heart failure. <i>European Journal of Nuclear Medicine and Molecular Imaging</i> , 2013 , 40, 1549-57	8.8	30
44	Plasmonic/magnetic nanocomposites: Gold nanorods-functionalized silica coated magnetic nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2017 , 502, 201-209	9.3	29
43	Facile transformation of FeO/FeO core-shell nanocubes to FeO via magnetic stimulation. <i>Scientific Reports</i> , 2016 , 6, 33295	4.9	28
42	PEGylated gold nanorods as optical trackers for biomedical applications: an in vivo and in vitro comparative study. <i>Nanotechnology</i> , 2016 , 27, 255101	3.4	26
41	Targeting FR-expressing cells in ovarian cancer with Fab-functionalized nanoparticles: a full study to provide the proof of principle from in vitro to in vivo. <i>Nanoscale</i> , 2015 , 7, 2336-51	7.7	25
40	Oil/water nano-emulsion loaded with cobalt ferrite oxide nanocubes for photo-acoustic and magnetic resonance dual imaging in cancer: in vitro and preclinical studies. <i>Nanomedicine:</i> Nanotechnology, Biology, and Medicine, 2017 , 13, 275-286	6	25
39	Esterase-Cleavable 2D Assemblies of Magnetic Iron Oxide Nanocubes: Exploiting Enzymatic Polymer Disassembling To Improve Magnetic Hyperthermia Heat Losses. <i>Chemistry of Materials</i> , 2019 , 31, 5450-5463	9.6	24
38	Fluorescence resonance energy transfer induced by conjugation of metalloproteins to nanoparticles. <i>Chemical Physics Letters</i> , 2006 , 417, 351-357	2.5	18

(2011-2018)

37	Dually responsive gold-iron oxide heterodimers: merging stimuli-responsive surface properties with intrinsic inorganic material features. <i>Nanoscale</i> , 2018 , 10, 3930-3944	7.7	17
36	Novel synthesis of platinum complexes and their intracellular delivery to tumor cells by means of magnetic nanoparticles. <i>Nanoscale</i> , 2019 , 11, 23482-23497	7.7	17
35	Dumbbell-like AuCu@FeO Nanocrystals: Synthesis, Characterization, and Catalytic Activity in CO Oxidation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 28624-28632	9.5	16
34	Oil Core-PEG Shell Nanocarriers for In Vivo MRI Imaging. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1801	3 13 .1	14
33	Hollow Iron Oxide Nanoparticles in Polymer Nanobeads as MRI Contrast Agents. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 6246-6253	3.8	13
32	Switchable Anion Exchange in Polymer-Encapsulated APbX Nanocrystals Delivers Stable All-Perovskite White Emitters. <i>ACS Energy Letters</i> , 2021 , 6, 2844-2853	20.1	13
31	Maghemite Nanoparticles with Enhanced Magnetic Properties: One-Pot Preparation and Ultrastable Dextran Shell. <i>ACS Applied Materials & Description of Shell Shell Materials & Description of Shell Shell Materials & Description of She</i>	9.5	12
30	Measuring cell motility using quantum dot probes. <i>Methods in Molecular Biology</i> , 2007 , 374, 125-31	1.4	12
29	Rod-shaped nanostructures based on superparamagnetic nanocrystals as viscosity sensors in liquid. Journal of Applied Physics, 2011 , 110, 064907	2.5	11
28	Magnetic Nanoparticle-Based Hyperthermia Mediates Drug Delivery and Impairs the Tumorigenic Capacity of Quiescent Colorectal Cancer Stem Cells. <i>ACS Applied Materials & Description</i> 13, 15959-15972	9.5	11
27	A nanobiosensor to detect single hybridization events. <i>Analyst, The</i> , 2009 , 134, 2458-61	5	10
26	Forced- and Self-Rotation of Magnetic Nanorods Assembly at the Cell Membrane: A Biomagnetic Torsion Pendulum. <i>Small</i> , 2017 , 13, 1701274	11	9
25	Crosslinked pH-responsive polymersome via Diels-Alder click chemistry: A reversible pH-dependent vesicular nanosystem. <i>Polymer</i> , 2019 , 165, 19-27	3.9	9
24	Multifunctional Magnetic and Upconverting Nanobeads as Dual Modal Imaging Tools. <i>Bioconjugate Chemistry</i> , 2017 , 28, 2707-2714	6.3	8
23	Uncovering the Magnetic Particle Imaging and Magnetic Resonance Imaging Features of Iron Oxide Nanocube Clusters. <i>Nanomaterials</i> , 2020 , 11,	5.4	8
22	Cation Exchange Protocols to Radiolabel Aqueous Stabilized ZnS, ZnSe, and CuFeS Nanocrystals with Cu for Dual Radio- and Photo-Thermal Therapy. <i>Advanced Functional Materials</i> , 2020 , 30, 2002362	15.6	8
21	Magnetic-Field-Induced Formation of Superparamagnetic Microwires in Suspension. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 28220-28226	3.8	7
20	CdSe/CdS semiconductor quantum rods as robust fluorescent probes for paraffin-embedded tissue imaging. <i>IEEE Transactions on Nanobioscience</i> , 2011 , 10, 209-15	3.4	7

19	Magnetic Nanostructures as Emerging Therapeutic Tools to Boost Anti-Tumour Immunity. <i>Cancers</i> , 2021 , 13,	6.6	7
18	Multilayered Magnetic Nanobeads for the Delivery of Peptides Molecules Triggered by Intracellular Proteases. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	6
17	Quantum-dot-based cell motility assay. <i>Science Signaling</i> , 2005 , 2005, pl5	8.8	6
16	Immunocytochemistry, electron tomography, and energy dispersive X-ray spectroscopy (EDXS) on cryosections of human cancer cells doped with stimuli responsive polymeric nanogels loaded with iron oxide nanoparticles. <i>Methods in Molecular Biology</i> , 2013 , 1025, 179-98	1.4	5
15	Photo-induced copper mediated copolymerization of activated-ester methacrylate polymers and their use as reactive precursors to prepare multi-dentate ligands for the water transfer of inorganic nanoparticles. <i>Polymer Chemistry</i> , 2020 , 11, 2969-2985	4.9	4
14	Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac IIII-MIBG study. <i>European Journal of Nuclear Medicine and Molecular Imaging</i> , 2015 , 42, 1601-11	8.8	4
13	Di- and tri-component spinel ferrite nanocubes: synthesis and their comparative characterization for theranostic applications. <i>Nanoscale</i> , 2021 , 13, 13665-13680	7.7	4
12	Magnetic Nanoparticles for Magnetic Hyperthermia and Controlled Drug Delivery 2014 , 139-172		3
11	Polymer Coating and Lipid Phases Regulate Semiconductor NanorodsQnteraction with Neuronal Membranes: A Modeling Approach. <i>ACS Chemical Neuroscience</i> , 2019 , 10, 618-627	5.7	3
10	Co-loading of doxorubicin and iron oxide nanocubes in polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic effects on cancer cells. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 34-44	9.3	3
9	Unveiling the Dynamical Assembly of Magnetic Nanocrystal Zig-Zag Chains via In Situ TEM Imaging in Liquid. <i>Small</i> , 2020 , 16, e1907419	11	2
8	Influence of Magnetic Scaffold Loading Patterns on their Hyperthermic Potential against Bone Tumors. <i>IEEE Transactions on Biomedical Engineering</i> , 2021 , PP,	5	2
7	Elucidating the Innate Immunological Effects of Mild Magnetic Hyperthermia on U87 Human Glioblastoma Cells: An In Vitro Study. <i>Pharmaceutics</i> , 2021 , 13,	6.4	2
6	Antibody-Functionalized Inorganic NPs: Mimicking Nature for Targeted Diagnosis and Therapy 2014 , 1-28		1
5	An ab initio study of the magnetic-metallic CoPt(3)-Au interfaces. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 015001	1.8	1
4	Selective transition metal extraction by reverse micelles. <i>Annali Di Chimica</i> , 2004 , 94, 33-43		1
3	Manipulating the morphology of the nano oxide domain in AuCu-iron oxide dumbbell-like nanocomposites as a tool to modify magnetic properties <i>RSC Advances</i> , 2018 , 8, 22411-22421	3.7	1
2	Fe O @Au@Cu S Heterostructures Designed for Tri-Modal Therapy: Photo- Magnetic Hyperthermia and Cu Radio-Insertion <i>Small</i> , 2022 , e2200174	11	1

Fluorescent Nanocrystals and Proteins. *Nanostructure Science and Technology*, **2009**, 225-254

0.9